Пме 211 схема подключения

Оглавление

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора

Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Добавить сайт в закладки

Схема подключения трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении – треугольником.

К двигателю подходит шесть концов. Магнитный пускатель КМ служит для включения и отключения двигателя. Контакты магнитного пускателя КМ1 работают как перемычки для включения асинхронного двигателя в треугольник

Обратите внимание, что провода от клеммника двигателя должны быть включены в таком же порядке, как и в самом двигателе. Главное – не перепутать. Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение

Магнитный пускатель КМ2 подключает перемычки для включения в звезду к одной половине клеммника, а к другой половине подается напряжение.

При нажатии на кнопку «ПУСК» питание подается на магнитный пускатель КМ. Он срабатывает, и на него подается напряжение через блок-контакт. Теперь кнопку можно отпустить. Далее напряжение подается на РВ, оно отсчитывает установленное время. Также напряжение через замкнутый контакт реле времени подается на магнитный пускатель КМ2, и двигатель запускается в «звезду».

Через установленное время срабатывает реле времени РТ. Магнитный пускатель Р3 отключается. Напряжение через контакт реле времени подается на нормально-замкнутый (замкнутый в отключенном положении) блок-контакт магнитного пускателя КМ2, а оттуда на катушку магнитного пускателя КМ1. Иэлектродвигатель включается в треугольник.

Пускатель КМ2 следует также подключать через нормально-замкнутый блок контакт пускателяКМ1 для защиты от одновременного включения пускателей.

Магнитные пускатели КМ1 и КМ2 лучше взять сдвоенные с механической блокировкой одновременного включения.

Кнопкой «СТОП» схема отключается.

Схема состоит:

  1. Автоматический выключатель.
  2. Три магнитных пускателя КМ, КМ1, КМ2.
  3. Кнопка пуск – стоп;- Трансформаторы тока ТТ1, ТТ2;- Токовое реле РТ;- Реле времени РВ.
  4. БКМ, БКМ1, БКМ2– блок-контакты своего пускателя.

Устройство и принцип работы магнитного пускателя


Основой является электромагнитная система, состоящая из катушки, неподвижной части сердечника и подвижной- якоря, который крепится к изоляционной траверсе с подвижными контактами. К неподвижным контактам при помощи болтовых соединений подключаются с одной стороны провода от электросети, а с другой- к нагрузке.

Для осуществления защиты от ошибочных включений устанавливаются по бокам или сверху над основными- блок контакты, которые например в реверсивной схеме с двумя пускателями при включении одного пускателя, блокируют включение второго. Если включится сразу два, то возникнет межфазное короткое замыкание, потому что изменение направления вращения асинхронного двигателя достигается благодаря замене местами 2 фаз. То есть со стороны подключения электродвигателя между пускателями делаются перемычки с чередованием на одном из них 2 фаз. Так же одна пара блок контактов необходима для удержания во включенном состоянии пускателя после отпускания кнопки «Пуск». Подробно схему подключения Мы рассмотрим в следующей статье.

Принцип работы пускателя довольно прост. Для включения необходимо подать рабочее напряжение на катушку. Она при включении потребляет по цепи управления очень маленький ток, их мощность находится в пределах от 10 до 80 Ватт, в зависимости от величины.

При включении катушка намагничивает сердечник и происходит втягивание якоря, который при этом замыкает главные и вспомогательные контакты. Цепь замыкается и электрический ток начинает протекать через подключенную нагрузку.

Для отключения необходимо обесточить катушку, и возвратная пружина возвращает якорь на место- блок и главные контакты размыкаются.


Между пускателем и 3 фазным асинхронным двигателем устанавливается тепловое реле, которое защищает его то токов перегрузки во внештатных ситуациях.

Внимание, тепловое реле не защищает от коротких замыканий, поэтому требуется установка перед пускателем необходимой величины автоматического выключателя. Принцип работы теплового реле прост— оно подбирается под определенный рабочий ток двигателя, при превышении его предела происходит нагревание и размыкание биметаллических контактов, которые размыкают цепь управления с отключением пускателя

Схема подключения будет рассмотрена в следующей статье

Принцип работы теплового реле прост— оно подбирается под определенный рабочий ток двигателя, при превышении его предела происходит нагревание и размыкание биметаллических контактов, которые размыкают цепь управления с отключением пускателя. Схема подключения будет рассмотрена в следующей статье.

История создания тепловых реле

Идея регулировки температуры возникла в XVII веке. Английский изобретатель Корнелиус Дреббель применил в двух изобретениях: печь, инкубатор для цыплят. Конструкции требовали ответственного подхода. Дреббель сумел реализовать концепцию, используя ртуть. Любопытный факт: на момент начала третьего десятилетия термометров, не существовало. Работающих на ртути. Историки склонны изобретение термометра приписывать Корнелиусу Дреббелю. Касательно печей новшество заключалось в следующем:

  • Топка снабжалась воздухом через сопло, снабжаемое регулируемой заслонкой.
  • В зависимости от конструкции сооружение оборудовалось подобием реторты, дно которой размещалось в пепле, либо углях.
  • Изменяющийся уровень ртути позволял осуществлять поддержание температуры на заданном уровне путем регулирования объема подаваемого воздуха.

Патент US1477455 A

Аналогичного рода конструкция предложена инженерами компании Вестингауз Электрик в 1917 году (патент US1477455 A). Уровень ртути позволял замкнуть-размокнуть цепь в зависимости от изменяющейся температуры. Еще раньше для контроля параметров среды стали применять свойства биметаллических пластин. Патент Вестингауз Электрик принят только 11 декабря 1923 года, шведско-швейцарская компания ABB занималась выпуском тепловых реле для защиты работающих двигателей с 1920 года. Термостаты для инкубатора, печи под авторства Дреббеля рассмотрены комиссией организованного в 1660 году Королевского общества (Англии). И примерно через 40 лет после создания нашли признание ученого совета.

Свойства биметаллических пластин известны с 1726 года. Точнее говоря, к этой дате приурочено первое их официальное применение. Джон Харрисон, плотник по профессии, кое-что знал о металлах. Нашел оригинальный способ подарить маятниковым часам независимость от температуры. Подвес изготовил из стержней двух разных металлов, что проиллюстрировано на изображении, взятом из издания Общества Ньюкомена (1946 год). По мере изменения температуры длина маятника остается постоянной. Период колебаний поддерживается с высокой точностью.

Джон Харрисон не останавливается на достигнутом, в палубных часах конструкции 1761 года применяет балансную пружину свернутой биметаллической ленты. По замыслу конструктора новшество скомпенсирует капризы климата. Теперь время позволит определить географические координаты вне зависимости от температуры. Идеи Дреббеля и Харрисона использовал в 1792 году Жан Симон Боннемейн, – сегодня называемый отцом централизованного снабжения горячей водой. Применял идеи терморегуляторов для курятников (1777 год). Историки отмечают любопытный факт: несмотря на знаменитость Жан остается личностью загадочной. Доподлинно неизвестен день рождения.

Маятник и балансная пружина

Инкубатор Боннемейна напоминает печь-буржуйку. Снизу цилиндрическая конструкция подогревается открытым пламенем, продукты сгорания обтекают стенки и уходят наружу. Температура контролируется биметаллической пластиной (из железа и латуни), погруженной в воды, заполняющую пространство меж стенок. Неудивительно, что в скором времени инженер придумал первую котельную. Температура пламени регулируется скоростью подачи воздуха в топку, биметаллический стержень управляет заслонкой. Последовали многие другие изобретения аналогичного толка.

В некоторой степени к тепловым реле можно отнести изобретение Джеймса Кьюли (интернет обошел внимание подробности жизни), датированное 1816 годом. В британском патенте №4086 упоминается некий балансный термометр

Весы, вага которых представлена трубкой с двумя утолщениями на концах. Поделена в центре двумя секциям, одна заполнена спиртом, другая – ртутью. При изменении температуры нарушается баланс, поскольку объёмы в утолщениях неравные. И нужно, подстраивая длины плеч винтом, добиться равновесия. Показания считываются с зубчатого лимба, жестко привязанного к трубке. Изобретатель отмечал возможность использования изобретения для контроля микроклимата зданий.

Катушка на 220 вольт: схемы подключения

Для управления работой магнитного пускателя используется всего две кнопки – кнопка «Пуск» и кнопка «Стоп». Их исполнение может быть различным: в едином корпусе или в отдельных корпусах.

Кнопки могут быть в одном корпусе или в разных

У кнопок, выпускаемых в отдельных корпусах, имеется всего по 2 контакта, а у кнопок, выпускаемых в одном корпусе – по 2 пары контактов. Кроме контактов, может присутствовать клемма для подключения заземления, хотя современные кнопки выпускаются в защищенных корпусах, которые не проводят электрического тока. Выпускаются также кнопочные посты в металлическом корпусе для промышленных нужд, которые отличаются высокой ударопрочностью. Как правило, они заземляются.

Подключение к сети 220 V

Подключение магнитного пускателя к сети 220 V наиболее простое, поэтому имеет смысл начать ознакомление именно с этих схем, которых может быть несколько.

Напряжение 220 V подается непосредственно на катушку магнитного пускателя, которые обозначены, как А1 и А2 и, которые располагаются в верхней части корпуса, что видно из фото.

Подключение контактора с катушкой на 220 В

Когда к этим контактам подключается обычная вилка на 220 V с проводом, устройство начнет работать после того, как вилка будет включена в розетку 220 V.

С помощью силовых контактов допустимо включать/отключать электрическую цепь на любое напряжение, лишь бы оно не превышало допустимые параметры, которые указываются в паспорте изделия. Например, на контакты можно подать напряжение аккумулятора (12 V), с помощью которого будет управляться нагрузка с рабочим напряжением 12 V.

Следует отметить, что неважно, на какие контакты подается управляющее однофазное напряжение, в виде «нуля» и «фазы». В данном случае, провода с контактов А1 и А2 можно поменять местами, что никак не повлияет на работу всего устройства. Вполне естественно, что подобная схема включения используется крайне редко, поскольку требует прямой подачи напряжения на катушку магнитного пускателя

При этом существует масса вариантов включения, с применением реле времени или сумеречного датчика, подключив к силовым контактам например, уличное освещение. Главное, чтобы «фаза» и «ноль» находились рядом

Вполне естественно, что подобная схема включения используется крайне редко, поскольку требует прямой подачи напряжения на катушку магнитного пускателя. При этом существует масса вариантов включения, с применением реле времени или сумеречного датчика, подключив к силовым контактам например, уличное освещение. Главное, чтобы «фаза» и «ноль» находились рядом.

Использование кнопок «Пуск» и «Стоп»

В основном, магнитные пускатели участвуют в процессе работы электродвигателей. Без наличия кнопок «Пуск» и «Стоп» такая работа связана с рядом трудностей. В первую очередь это связано с особенностями работы электродвигателей, которые зачастую находятся на значительном удалении. Кнопки включаются в цепь катушки последовательно, как на рисунке ниже.

Схема включения магнитного пускателя с кнопками

Подобный способ характеризуется тем, что магнитный пускатель окажется в рабочем состоянии до тех пор, пока будет нажата кнопка «Пуск», что очень неудобно. В связи с этим, в схему включаются дополнительные (БК) контакты магнитного пускателя, которые дублируют работу кнопки «Пуск». При включении магнитного пускателя они замыкаются, поэтому после отпускания кнопки «Пуск» цепь сохраняет свою работоспособность. Они обозначены на схеме, как NO (13) и NO (14).

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

Отключить работающее оборудование можно только с помощью кнопки «Стоп», которая разрывает электрическую цепь питания магнитного пускателя и всей схемы. Если в схеме предусмотрена другая защита, например, тепловая, то в случае ее срабатывания схема также окажется не работоспособной.

Питание для двигателя берется с контактов Т, а подается питания на контакты магнитного пускателя, под обозначением L.

В этом видео подробно рассказывается и показывается, в какой последовательности подключаются все провода. В данном примере использована кнопка (кнопочный пост), выполненная в одном корпусе. В качестве нагрузки можно подключить измерительный прибор, обычную лампу накаливания, бытовой прибор и т.д., работающие от сети 220 V.

Как подключить магнитный пускатель. Схема подключения.

Watch this video on YouTube

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика, который легко можно сделать самому.

Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Смена направления вращения реализуется общеизвестным способом – меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет “правое” вращение. Когда включается КМ2 – первая и третья фазы меняются местами, движок будет крутиться “влево”. Включение пускателей КМ1 и КМ2 реализуется разными кнопками “ Пуск вперед ” и “ Пуск назад “, выключение – одной, общей кнопкой “ Стоп ” , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает “защиту от дурака”

Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, “Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!” А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это – электрическая защита от того же дурака. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки “Пуск” сразу, ничего не получится – двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую – моветон среди электриков.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

Реверсивное управление гидравликой

А вот пример реверсивного управления клапанами, из статьи про гидравлический пресс:

Электрическая схема управления гидравликой

То, что применяются реле, не должно сбивать с толку. Фактически контактор и реле – суть одно устройство, отличие только в конструкции и параметрах.

Фактически, схема повторяет схему для двигателя, только вместо кнопки “Стоп” – два концевых выключателя, и кнопки SB1, SB2 – с дополнительными блокировочными НЗ контактами. Подробное описание работы схемы – здесь.

Работа реверсивного пускателя также подробно описана в статье про подключение генератора к сети дома.

Схема подключения пускателя с тепловым реле

В схеме выше я упустил из виду тепловую защиту ради простоты схемы. На практике обязательно применяют тепловое реле типа РТЛ (по крайней мере, это было принято до 2000 г. у нас и до 1990 г. у “них”)

6. Схема подключения пускателя с кнопками и тепловым реле

Как только ток двигателя возрастает выше установленного (из-за перегрузки, пропадания фазы) – контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя рвётся.

Таким образом, тепловое реле выполняет роль кнопки “Стоп”, и стоит в той же цепи, последовательно

Где его поставить – не особо важно, можно на участке схемы L1 – 1, если это удобно в монтаже

Однако, тепловое реле не спасает от КЗ на корпус и между фазами. Поэтому в таких схемах обязательно ставят защитный автомат, как показано на схеме 7:

7. Схема подключения пускателя с кнопками автоматом и тепловым реле. ПРАКТИЧЕСКАЯ СХЕМА

Ток защитного автомата двигателя QF не надо подбирать так тщательно, как в схеме 3, поскольку с тепловой перегрузкой справится РТЛ. Достаточно, чтобы он защищал подходящие провода от перегрева.

Выводы и полезное видео по теме

Видео #1. Обзор принципа действия, типов и основных неисправностей пускозащитного реле:

Видео #2. Признаки поломок распространенного пускового реле РКТ. Подключение внешнего конденсатора для компенсации нестабильного напряжения:

Видео #3. Прозвон двигателя и реле. Ремонт катушки:

Несложная конструкция пускового реле позволяет самостоятельно находить неисправности и легко устранять их. Для этого не нужны глубокие знания в электрике или специальный инструмент.

Однако необходимо соблюдать пунктуальность, так как от качества проведенных работ зависит функциональность дорогостоящего оборудования.

Хотите рассказать о том, как подбирали пусковое реле для восстановления работоспособности холодильного агрегата? Располагаете полезными сведениями по теме статьи, которыми стоит поделиться с посетителями сайта? Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фотоснимки, задавайте вопросы.

Основным средством защиты электроприводов от перегрузок в настоящее время являются тепловые реле, а также автоматические выключатели с тепловыми расцепителями. Наибольшее распространение получили двухполюсные реле типа ТРН и ТРП, а также трехполюсные — РТЛ, РТТ. Последние имеют улучшенные характеристики и обеспечивают защиту от несимметричных режимов.

При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке – примерно за 2 мин. Однако это требование часто не выполняется по той причине, что номинальный ток нагревательного элемента теплового реле не соответствует номинальному току защищаемого электродвигателя. На работу тепловых реле существенное влияние оказывает температура окружающей среды.

Основным параметром тепловых реле является время-токовая защитная характеристика, т. е. зависимость времени срабатывания от величины перегрузки.

Первая из них – для реле, находящегося в холодном состоянии (разогрев током начинается, когда реле имеет температуру, равную температуре окружающей среды), и вторая – для реле, находящегося в горячем состоянии (режим перегрузки наступает после работы реле в течение 30 – 40 мин под номинальным током).

Рис. 1. Защитные характеристики теплового реле: 1 – зона срабатывания из холодного состояния, 2 – зона срабатывания из горячего состояния

Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле должно настраиваться на специальном стенде. При этом исключается ошибка из-за естественного разброса номинальных токов заводских нагревательных элементов.

При проверке и настройке тепловой защиты на стенде используется так называемый метод фиктивных нагрузок. Через нагревательный элемент пропускают ток пониженного напряжения, имитируя таким образом реальную нагрузку, и по секундомеру определяют время срабатывания. В процессе настройки необходимо стремиться к тому, чтобы 5. 6-кратный ток отключался через 9 – 10 с, а 1,5-кратный через 150 с (при холодном состоянии нагревателя).

Для настройки тепловых реле можно использовать серийно выпускавшиеся cпециализированные стенды.

На рис. 2 показана схема такого устройства. Приспособление состоит из маломощного нагрузочного трансформатора TV2, к вторичной обмотке которого подключается нагревательный элемент теплового реле КК, а напряжение первичной обмотки плавно регулируется автотрансформатором TV1 (например ЛАТР-2). Ток нагрузки контролируется амперметром РА, включенным во вторичную цепь через трансформатор тока.