Необходимость оценки прочности бетона

Оглавление

Способы проверки

Для испытаний различных типов конструкций используются два основных способа:

  • сквозное УЗ прозвучивание линейных сборных конструкций в поперечном направлении. Датчики устанавливаются с противоположных сторон исследуемого изделия.
  • поверхностное прозвучивание плоских, ребристых, многопустотных плит перекрытия и стеновых панелей. Датчики устанавливаются с одной стороны объекта.

Качественный акустический контакт между исследуемой конструкцией и ультразвуковыми излучателями обеспечивается использованием вязких материалов. Также допускается «сухой» способ, при котором применяются специальные протекторы и конусные насадки.

От чего зависит прочность

Бетон набирает прочность вследствие происходящих при взаимодействии бетонной смеси с водой химических процессов. При этом скорость химических реакций под влиянием некоторых факторов может ускоряться или замедляться, что непосредственно влияет на прочностные характеристики конечного продукта.

К числу основных технологических факторов относят:

  • размеры и форма конструкции;
  • коэффициент усадки бетона при заливке;
  • степень активности цемента;
  • процент вместительности в смеси цемента;
  • пропорции в используемом растворе цемента и воды;
  • типы и качество применяемых наполнителей, и правильность их смешивания;
  • степень уплотнения;
  • время застывания раствора;
  • условия, в которых происходит отверждение: показатели влажности и температуры;
  • применение повторного вибрирования;
  • условия транспортировки раствора;
  • уход за монолитной конструкцией после заливки.

От каждого из этих критериев зависит какой прочностью будет обладать бетон и надежность возведенных из него сооружений или отдельных конструктивных элементов.

Прочностные характеристики бетона могут ухудшиться если нарушены производственные технологии. Как пример грубых нарушений можно привести превышение допустимого времени пребывания в пути бетонной смеси, не выполнение уплотнения и трамбовки при заливке и другие.

Косвенные методы контроля

Подобные исследования проводятся, когда нужно оценить значение прочностных характеристик, используя их в качестве одного из нескольких факторов, дающих представление о техническом состоянии сооружения. Полученный результат не допускается использовать, если не была определена частная градуировочная зависимость (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).

Ультразвуковое тестирование

Широкое распространение получил способ испытания бетона неразрушающим методом, подразумевающим использование ультразвуковых волн. При проведении операции устанавливается связь между скоростью колебаний и плотностью затвердевшей смеси.

На зависимость могут влиять самые различные факторы.

Демонстрируется проведение операции.

  • Фракция заполнителя и его количество в растворе.
  • Выбранный способ приготовления состава.
  • Степень уплотнения и напряжение.
  • Изменение расхода вяжущего вещества более, чем на 30 процентов.

Упругий отскок

Неразрушающий контроль прочности бетона этим методом позволяет установить зависимость между прочностью на сжатие и упругостью материала. При исследовании металлический боек основного прибора после удара отдаляется на определенное расстояние, которое является показателем прочностных качеств конструкции.

Так осуществляется проверка отскоком.

Во время испытаний приспособление фиксируется так, чтобы стальной элемент плотно соприкасался с бетонной поверхностью, для чего применяются специальные винты. После крепления маятник устанавливается горизонтально. В этом случае он защелкивается непосредственно спусковым крючком.

Приложив устройство перпендикулярно к плоскости, нажимают на курок. Боек взводится автоматически, после чего самостоятельно освобождается и совершает удар под действием особой пружины. Металлический элемент отскакивает на какое-то расстояние, которое измеряется специальной шкалой.

Схема движения внутреннего стержня.

В качестве основного инструмента для испытаний используется прибор системы КИСИ, который имеет достаточно сложное строение. Прочность затвердевшей смеси удается определить на основании данных устройства после проведения 6-7 тестов по специальному графику.

Придание ударного импульса

Благодаря этому методу исследования можно зафиксировать энергию удара, освобождающуюся в момент соприкосновения бойка с бетонной конструкцией. Положительным моментом считается то факт, что приборы неразрушающего контроля бетона, работающие по принципу ударного импульса, имеют компактные размеры. Однако их цена достаточно высока.

Результаты испытаний составов разных классов.

Пластическая деформация

При проведении операции осуществляется измерение размеров следа, оставленного на бетонной поверхности стальным элементом. Метод считается несколько устаревшим, но в связи с дешевизной оборудования он продолжает активно использоваться в строительной среде. После нанесенного удара измеряются оставшиеся отпечатки.

Устройства для определения прочности такого типа базируются на вдавливании стержня непосредственно в плоскость путем статического давления нужной силы или обычного удара. В качестве основных приборов используются маятниковые, молотковые и пружинные изделия.

Ниже приводятся условия проведения операции.

Молоток Кашкарова для проведения пластической деформации.

  • Испытания должны осуществляться на участке, площадь которого колеблется от 100 до 400 кв. см.
  • При проведении данной операции следует делать не менее пяти измерений с высокой точностью.
  • Ударная сила должна иметь перпендикулярное направление относительно испытываемой плоскости.
  • Для определения прочностных характеристик требуется гладкая поверхность, которая достигается формованием в опалубке из металла.

От чего зависит прочность

Бетон набирает прочность вследствие происходящих при взаимодействии бетонной смеси с водой химических процессов. При этом скорость химических реакций под влиянием некоторых факторов может ускоряться или замедляться, что непосредственно влияет на прочностные характеристики конечного продукта.

К числу основных технологических факторов относят:

  • размеры и форма конструкции;
  • коэффициент усадки бетона при заливке;
  • степень активности цемента;
  • процент вместительности в смеси цемента;
  • пропорции в используемом растворе цемента и воды;
  • типы и качество применяемых наполнителей, и правильность их смешивания;
  • степень уплотнения;
  • время застывания раствора;
  • условия, в которых происходит отверждение: показатели влажности и температуры;
  • применение повторного вибрирования;
  • условия транспортировки раствора;
  • уход за монолитной конструкцией после заливки.

От каждого из этих критериев зависит какой прочностью будет обладать бетон и надежность возведенных из него сооружений или отдельных конструктивных элементов.

Прочностные характеристики бетона могут ухудшиться если нарушены производственные технологии. Как пример грубых нарушений можно привести превышение допустимого времени пребывания в пути бетонной смеси, не выполнение уплотнения и трамбовки при заливке и другие.

Как определить прочность бетона?

В производстве материалов и строительстве применяются методы для испытания бетона на прочность:

  • разрушающие;
  • неразрушающие прямые;
  • неразрушающие косвенные.

Они позволяют с той или иной точностью проводить контроль и оценку фактической прочности бетона в лабораториях, на площадках или в уже построенных сооружениях.

Разрушающие методы

Из готовой смонтированной конструкции выпиливают или выбуривают образцы, которые затем разрушают на прессе. После каждого испытания фиксируют значения максимальных сжимающих усилий, выполняют статистическую обработку.

Этот метод, хотя и дает объективные сведения, часто не приемлем из-за дороговизны, трудоемкости и причинения локальных дефектов.

На производстве исследования проводят на сериях образцов, заготовленных с соблюдением требований ГОСТ 10180-2012 из рабочей бетонной смеси. Кубики или цилиндры выдерживают в условиях, максимально приближенным к заводским, затем испытывают на прессе.

Неразрушающие прямые

Неразрушающие методы контроля прочности бетона предполагают испытания материала без повреждений конструкции. Механическое взаимодействие прибора с поверхностью производится:

  • при отрыве;
  • отрыве со скалыванием;
  • скалывании ребра.

При испытаниях методом отрыва на поверхность монолита приклеивают эпоксидным составом стальной диск. Затем специальным устройством (ПОС-50МГ4, ГПНВ-5, ПИВ и другими) отрывают его вместе с фрагментом конструкции. Полученная величина усилия переводится с помощью формул в искомый показатель.

При отрыве со скалыванием прибор крепится не к диску, а в полость бетона. В пробуренные шпуры вкладывают лепестковые анкеры, затем извлекают часть материала, фиксируют разрушающее усилие. Для определения марочной характеристики применяют переводные коэффициенты.

Неразрушающие косвенные методы

Уточнение марки материала неразрушающими косвенными методами проводится без внедрения приборов в тело конструкции, установки анкеров или других трудоемких операций. Применяют:

  • исследование ультразвуком;
  • метод ударного импульса;
  • метод упругого отскока;
  • пластической деформации.

При ультразвуковом методе определения прочности бетона сравнивают скорость распространения продольных волн в готовой конструкции и эталонном образце. Прибор УГВ-1 устанавливают на ровную поверхность без повреждений. Прозванивают участки согласно программе испытаний.

Данные обрабатывают, исключая выпадающие значения. Современные приборы оснащены электронными базами, проводящими первичные расчеты. Погрешность при акустических исследованиях при соблюдении требований ГОСТ 17624-2012 не превышает 5%.

При определении прочности методом ударного импульса используют энергию удара металлического бойка сферической формы о поверхность бетона. Пьезоэлектрическое или магнитострикционное устройство преобразует ее в электрический импульс, амплитуда и время которого функционально связаны с прочностью бетона.

Прибор компактен, прост в применении, выдает результаты в удобном виде — единицах измерения нужной характеристики.

При определении методом обратного отскока прибор — склерометр — фиксирует величину обратного движения бойка после удара о поверхность конструкции или прижатой к ней металлической пластины. Таким образом устанавливается твердость материала, связанная с прочностью функциональной зависимостью.

Метод пластических деформаций предполагает измерение на бетоне размеров следа после удара металлическим шариком и сравнение его с эталонным отпечатком. Способ разработан давно. Наиболее часто на практике используется молоток Кашкарова, в корпус которого вставляют сменный стальной стержень с известными характеристиками.

По поверхности конструкции наносят серию ударов. Прочность материала определяется из соотношения полученных диаметров отпечатков на стержне и бетоне.

Пульсар 1.2.

Рис. 2. Внешний вид прибораПульсар-1.2: 1 — вход приемника;2 — выход излучателя

Прибор состоит из электронного блока (см. рис. 3.2) и ультразвуковых преобразователей — раздельных или объединенных в датчик поверхностного прозвучивания. На лицевой панели электронного блока расположены: 12-ти клавишная клавиатура и графический дисплей. В верхней торцевой части корпуса установлены разъёмы для подключения датчика поверхностного прозвучивания или отдельных УЗ преобразователей для сквозного прозвучивания. На правой торцевой части прибора расположен разъем USB интерфейса. Доступ к аккумуляторам осуществляется через крышку батарейного отсека на нижней стенке корпуса.

Работа прибора основана на измерении времени прохождения ультразвукового импульса в материале изделия от излучателя к приемнику. Скорость ультразвука вычисляется делением расстояния между излучателем и приемником на измеренное время. Для повышения достоверности в каждом измерительном цикле автоматически выполняется 6 измерений и результат формируется путем их статистической обработки с отбраковкой выбросов. Оператор выполняет серию измерений (от 1 до 10 измерений по его выбору), которая также подвергается математической обработке с определением среднего значения, коэффициента вариации, коэффициента неоднородности и с отбраковкой выбросов.

Скорость распространения ультразвуковой волны в материале зависит от его плотности и упругости, от наличия дефектов (трещин и пустот), определяющих прочность и качество. Следовательно, прозвучивая элементы изделий, конструкций и сооружений можно получать информацию о:

  • прочности и однородности;
  • модуле упругости и плотности;
  • наличии дефектов и их локализации.
  • форме А-сигнала

Возможны варианты прозвучивания со смазкой и сухим контактом (протекторы, конусные насадки), см. рис. 3.1.

Рис. 3. Варианты прозвучивания

Прибор осуществляет запись и визуализацию принимаемых УЗК, имеет встроенные цифровые и аналоговые фильтры, улучшающие соотношение «сигнал-помеха». Режим осциллографа позволяет просматривать сигналы на дисплее (в задаваемом масштабах времени и усиления), вручную устанавливать курсор в положение контрольной метки первого вступления. Пользователь имеет возможность вручную изменять усиление измерительного тракта и смещать ось времени для просмотра и анализа сигналов первого вступления и огибающей.

Оформление результатов для методов определения прочности неразрушающего контроля

Результаты испытаний прочности бетона заносят в журнал, в котором должно быть указано:

  • наименование конструкции, номер партии;
  • вид контролируемой прочности и ее требуемое значение;
  • вид бетона;
  • наименование неразрушающего метода, тип прибора и его заводской номер;
  • среднее значение косвенной характеристики прочности и соответствующее значение прочности бетона;
  • сведения об использовании поправочных коэффициентов;
  • результаты оценки прочности бетона;
  • фамилия и подпись лица, проводившего испытание, дата испытания.

Для ультразвукового метода определения прочности нужно воспользоваться формой журнала, установленной в приложениях №8-9, ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности»

Что влияет на прочность?

Затвердевшая в условиях строительной площадки бетонная смесь может давать отличные от лабораторных результаты. Помимо качества цемента и заполнителей на характеристику влияют:

  • условия транспортировки;
  • способ укладки в опалубку;
  • размеры и форма конструкции;
  • вид напряженного состояния;
  • влажность, температура воздуха на всем протяжении твердения смеси;
  • уход за монолитом после заливки.

Качество смеси и ее прочностные характеристики ухудшаются, если при производстве работ совершались грубые нарушения технологии:

  • доставка производилась не в миксере;
  • время в пути превысило допустимое;
  • при заливке смесь не уплотнялась вибраторами или трамбовками;
  • при монтаже была слишком низкая или высокая температура, ветер;
  • после укладки в опалубку не поддерживались оптимальные условия твердения.

Неправильная транспортировка приводит к схватыванию, расслоению и потере подвижности смеси. Без уплотнения в толще конструкции остаются пузырьки воздуха, которые ухудшают качество монолита.

При температуре 15°-25°С и высокой влажности в первые 7-15 суток бетон достигает прочности 70%. Если условия не выдерживаются, то сроки затягиваются. Опасно как охлаждение смеси, так и ее пересушивание. Зимой опалубку утепляют или прогревают, летом поверхность монолита увлажняют, накрывают пленкой.

На заводах ЖБИ осуществляют пропаривание или автоклавную обработку конструкций, чтобы уменьшить время набора прочности. Процесс занимает от 8 до 12 часов.

Чтобы определить, насколько характеристики конструкции соответствуют проектным, а также при обследованиях и мониторинге технического состояния зданий проводят проверку прочности бетона. Она включает лабораторные испытания образцов, неразрушающие прямые и косвенные методы исследования объектов.

Факторы, влияющие на погрешность измерений при контроле и оценке прочности бетона:

  • неравномерность состава;
  • дефекты поверхности;
  • влажность материала;
  • армирование;
  • коррозия, промасливание, карбонизация внешнего слоя;
  • неисправности прибора — износ пружины, слабую зарядка аккумуляторной батареи.

Самый информативный способ проверки бетонных конструкций — изъятие образцов из тела монолита с последующим их испытанием. Такой метод сводит к минимуму ошибки, но достаточно дорог и трудоемок. Поэтому чаще пользуются более доступными исследованиями с помощью приборов, измеряющих зависимые от прочности характеристики — твердость, усилие на отрыв или скол, длину волны. Зная их, можно с помощью переходных формул вычислить искомую величину.

Теоретическая информация

Бетоном является строительный каменный материал искусственного происхождения, который получается в процессе отвердения правильно подобранной уплотненной смеси связующих веществ (цемент, песок, щебень, вода и др. заполнители). Для увеличения способности к противостоянию агрессивным средам и усиления прочностных свойств используют специальные добавки. Смесь всех этих компонентов до того, как она затвердела, принято называть смесью.

Каменная основа образуется за счет песка и щебня. После добавления в смесь воды образуется цементное тесто, которое заполняет промежутки между песком и щебнем, обво­лакивая их, и выполняет изначально функцию смазки для заполнителей, при помощи которой смесь становится подвижной (текучей). В процессе отвердения зерна заполнители связываются, образуя искусственный монолитный камень, называемый бетоном. При сочетании с арматурой из стали получаемую конструкцию называют железобетонной.

Общие сведения

Рассмотрим часто применяемые способы, которые помогут понять, как разрушить бетонный фундамент своими руками:

Простые инструменты Если вы столкнулись с небольшим препятствием, можете использовать кувалду или обычный перфоратор, но для особо трудных мест оборудование должно быть профессиональным. Сам по себе метод достаточно тяжелый и требует приложения физических усилий. Но, особо прочный фундамент с его помощью разрушить не удастся. Специальная кислая смесь Самый распространенный способ. Невзрывчатые вещества Порошок НРС-1. Специальный алмазный канат Для разрушения армированного бетона, так как обычные методы для этих работ не применяются.

Совет: при демонтаже ЖБК хорошо помогает резка железобетона алмазными кругами необходимой плотности.

Чтобы понимать, какой способ подходит для определенного случая, нужно ознакомиться с каждым подробнее.

Разрушение бетонных оснований дороггидромолотом

Наиболее простой метод

Раздробить на отдельные куски небольшую бетонную конструкцию вы сможете кувалдой. При этом скорость разрушения в данном случае будет зависеть лишь от ваших физических возможностей. Поэтому, если они невелики, вы можете потратить на работу уйму сил и времени.

Как разрушить бетон кувалдой

Как вариант, можете просверлить отверстия перфоратором в нескольких местах, чтобы уменьшить прочность материала, тогда его разрушить будет гораздо легче. Считают, что даже армированную бетонную плиту можно раздробить кувалдой, однако стоит ли это делать? Ниже вы узнаете о других более легких методах.

Используем порошок

В данном разделе вы узнаете, как химическим способом разрушить бетон, так как довольно часто для демонтажа твердых стройматериалов используют химические порошки, которые не горят и не взрываются.

Популярность данного способа обусловлена тем, что во время процесса отсутствует шум и не образуется лишний мусор, что можно наблюдать при обычном взрыве. Обычно применяют порошок НРС-1, так как он обладает высокой силой разрушения (> 30 МПа).

На фото — алмазное сверление отверстий

Ниже будет предложена инструкция по его использованию:

  • Просверлите в бетонной конструкции отверстия диаметром 80 мм, расстояния между ними – от 560 мм.
  • Влейте в них подготовленный раствор – порошок с водой.
  • Подождите примерно 48 часов, за этот период химическое вещество начнет кристаллизоваться и приступить к разрушению стройматериала.
  • Спустя заявленное время, на месте бетонной конструкции будут лишь куски лома, который вывезите к месту утилизации. Совет: для работы вам может понадобиться услуга — алмазное бурение отверстий в бетоне нужными по диаметру коронками.

Классификация методов испытаний

Для проверки бетона применяют несколько методов:

  • Проверка образцов, отливаемых в лабораторных условиях. Данный метод предусматривает изготовление кубиков или цилиндров из испытуемой смеси с последующей проверкой прочности материала на прессе;
  • Проверка образцов, выпиленных или вырубленных из уже готовой конструкции. Получают такие образцы с помощью бурения алмазными коронками. Далее полученные керны направляют в лабораторию для определения прочностных характеристик, как и в первом случае, с применением пресса. Данный метод связан с существенными затратами по получению образца и с угрозой ослабления целостности элемента, из которого был получен керн;
  • Способ проверки бетона на прочность неразрушающим методом. В данном случае используются инструменты и приборы, с помощью которых можно изучать характеристики бетона без размещения образцов в специальных устройствах. Для данных исследований могут задействовать ультразвук, проверять качество основания с помощью ударно-импульсного метода испытания бетона и т.д.

Наиболее популярным методом, позволяющим получить самые точные показатели свойств бетона, является проверка образцов на сжатие под прессом.


Допустимые варианты контрольных проб.

Косвенные виды испытаний бетона

С помощью ультразвука Неразрушающий способ исследований с помощью ультразвуковых волн осуществляется путем измерения скорости их прохождения сквозь тело конструкции. Генерация и регистрация волн ультразвука производится специальными приборами, оборудованными датчиками. Бетон исследуется не только близко к поверхности, но и по всей толще конструкций. При этом можно установить не только марку по прочности, но и выявить дефекты конструкции, образовавшиеся при бетонировании.


Расчет фактической прочности осуществляется на основании установленной зависимости скорости прохождения волн и прочности определенных марок бетона. Результаты заносятся в протокол. Методом упругого отскока Неразрушающий способ исследования посредством упругого отскока осуществляется с помощью специального ударного инструмента – склерометра или его разновидностей. Наиболее известным инструментом для измерений является склерометр (молоток) Шмидта. Склерометр оснащен пружиной и сферическим штампом. При ударе по поверхности конструкции происходит отскок ударника на определенное расстояние, которое фиксируется на специальной шкале и записывается в протоколе. Расчет фактической прочности материала производится на основании зависимости твердости поверхности конструкции и величины отскока штампа при ударе. Методом ударного импульса Определение прочности посредством ударного импульса производится специальными приборами, оборудованными узлом измерения с подшипником качения. При ударе бойком прибора по поверхности конструкции происходит вращение подшипника под воздействием возникающей волны энергии. Величина ударного импульса вращения подшипника фиксируется прибором и выдается в виде готового результата единицы измерения прочности, которая записывается в протоколе испытаний. Методом пластической деформации Испытание неразрушающим способом пластической деформации осуществляется с помощью специальных инструментов – молотка Кашкарова и других приборов, способных оставлять отпечатки после ударного или вдавливающего воздействия. Молотком наносят удары по поверхности конструкции, измеряют глубину отпечатков и установленному соотношению размера отпечатка и твердости ударной части инструмента рассчитывают прочность материала.

Как разрушить армированный бетон?


Вышеперечисленные тихие методы менее эффективны при разрушении армированного бетона, поскольку этот стройматериал прочнее. По мнению опытных специалистов, использовать перфоратор при сверлении отверстий бессмысленно. В этом случае лучше подготовить сверла со специальными насадками. Только эти инструменты помогут вам справиться с поставленной задачей.

Вместе с тем вам удастся сверлить под разными углами. Вышеописанные методы «тихого» демонтажа конструкций из бетона не смогут конкурировать с резкой алмазными коронками. За это придется заплатить немало средств, но зато вы сможете решить задачу в кратчайшие сроки. Заниматься этим должен профессионал, поскольку спецтехникой сложно управлять. Демонтажные работы заключаются в применении давления. Скорость резки зависит от плотности бетонной конструкции. К примеру, при повышенной прочности бетона за один час прорезают около двух метров изделия

Важно соблюдать ряд требований:

  • необходимо постоянно охлаждать технику, поскольку она сильно нагревается;
  • следует поставить рядом емкость с водой (вода будет служить защитой для алмазных коронок, предотвращая их повреждение, смывая пыль, налипающую во время работы);
  • также нужно иметь возможность подключать технику к напряжению (трехфазное), иначе аппаратура не может работать.

Помимо этого, для демонтажа бетона строители используют гидроклин. Преимуществами применения гидроклина считаются безопасность, дешевизна. Гидроклин удобно транспортировать, так как он компактен. Дешевизна метода, предназначенного для разрушения бетонных конструкций, состоит в простоте и надежности гидроклина. Конструкция не предполагает дополнительных расходов на ремонтные работы, поскольку гидроклин можно использовать в течение длительного времени. Гидроклином способен пользоваться один рабочий. Кроме того, разрушение бетонных изделий с помощью гидроклина не потребует проведения сложных и длительных расчетов.