Из чего можно собрать электрогенератор своими руками

Оглавление

Схема фазовой автоподстройки частоты

Многие устройства используют схемы фазовой автоподстройки частоты (ФАПЧ) для сравнения фазы сигнала с выхода генератора с фазой частоты и регулировки частоты генератора таким образом, чтобы значения фаз совпали.

На рисунке приведена схема фазовой автоподстройки частоты (ФАПЧ). Устройство сравнения фаз (компаратор) имеет 2 входа и 1 выход. В качестве входных сигналов используется сигнал от задающего генератора (сигнал на входе схемы ФАПЧ) и сигнал с выхода генератора, управляемого напряжением (ГУН). Компаратор сравнивает фазы двух сигналов и формирует сигнал ошибки, который следует на фильтр нижних частот (ФНЧ), а с него – на ГУН, управляя его частотой.

Устройство

Принцип работы бензинового генератора основан на превращении энергии, полученной при сгорании бензина в электрическую. Составные части бензогенератора:

  • Бензиновый двигатель;
  • Электрический двигатель 127, 220 или 380 В;
  • Топливный бак;
  • Пусковой стартер;
  • Конденсаторы;
  • Электрические автоматы и выключатели;
  • Вольтметр;
  • Розетки для подключения электроприборов.

Промышленные модели снабжены дополнительными функциями, позволяющими контролировать все параметры работы. Особенно удобен АВР (автоматический ввод резервного питания в аварийных ситуациях). Все устройство монтируется на удобную жесткую раму, снабженную колесами и ручками для транспортировки. Заводской кожух намного красивее и прочнее самодельного. Ниже приведен рисунок с указание всех деталей бензинового генератора.

Для тех, кто хорошо разбирается в электротехнике и умеет работать руками, сделать бензогенератор своими руками не составит труда.

Принцип работы и устройство

В основу работы положено использование целой гибридной системы, которая занимается преобразованием кинетической энергии в переменный ток.

Мотор работает исключительно на силе магнитного отталкивания от торцов электромагнитов. Для этого создается индукционное поле, которое позволяет продуцировать электрический импульс из магнитных колебаний.

Самая примитивная конструкция генераторов Адамса содержит следующие элементы:

  1. Генератор – представляет собой герметично закрытую цилиндрическую емкость, внутри которой создается электромагнитное поле, за счет воздействия наружных катушек.
  2. Конвертер-преобразователь напряжения – генерирует электричество, путем преобразования магнитных импульсов в переменный ток.
  3. Аккумуляторные батареи – накапливают полученный заряд, позволяя использовать его в любое удобное время.

Главный конструктивный элемент – безредукторный генератор прямого вращения, который по своей структуре многополюсный. По его внешнему краю располагаются магниты, количество которых подбирается индивидуально, в зависимости от желаемой мощности. В процессе создания электрического поля генератор вращается вокруг своей оси, вырабатывая КПД не менее 91%. Генераторы хорошо соединяются друг с другом, что позволяет получать автономные электросети абсолютно без затрат. Это выгодно в том случае, когда мощность одного генератора не превышает 5 кВт, а для полноценного обеспечения электричеством требуется не менее 10 кВт.

Работа генератора под нагрузкой продемонстрирована на видео

Генераторы Тесла

Колебательный контур

Для лучшего понимания того, как работает эфирный генератор Тесла, сначала следует ознакомиться с принципом работы типового колебательного контура, параллельно которому подключён электрический разрядник. Начнём с его составляющих элементов – индуктивности и ёмкости, которые задают основные резонансные характеристики (частоту и фазу)

Перед тем, как собрать их в единую схему, необходимо обратить внимание на следующие моменты:

  • При подаче в контур тока от внешнего источника сначала заряжается конденсатор, в котором концентрируется вся поступившая энергия;
  • По завершении зарядки емкость начинает разряжаться через катушку тока, которая полностью собирает эту энергию в своей индуктивности;
  • Вследствие этих процессов в контуре создаётся переменное электромагнитное поле, а формируемые при этом радиоволны под воздействием новых энергетических поступлений начинают распространяться в эфир.

Важно! Без внешней поддержки собственные колебания в контуре быстро затухают, что объясняется потерями тока на пассивной составляющей цепей (смотрите схему на картинке ниже). Затухающие колебания. Затухающие колебания

Затухающие колебания

Последнее связано с тем, что входящие в электрогенератор подводящие провода и катушка обладают небольшим омическим сопротивлением, на котором начальный энергетический запас постепенно рассеивается.

При выборе параметров составляющих колебательного контура (катушки и конденсатора), на основе которого собирается генератор Тесла, необходимо учесть следующие моменты:

  • Учёный рекомендовал делать его первичную катушку всего лишь из нескольких витков толстого провода, обеспечивающих малую индуктивность и низкое омическое сопротивление;
  • Вторичная же катушка, наоборот, должна наматываться из большого количества витков очень тонкого провода;
  • Такая конфигурация обеспечивает максимальный энергетический эфирный выброс и распространение волн на удалённые расстояния.

После подключения параллельно колебательному контуру разрядника этот эффект многократно усиливается.

Схема излучателя Тесла

Напомним, что основным фактором, определяющим возможность практического воплощения идей Тесла, является высокая мощность генерируемого импульса магнитного поля. Рассмотренные выше принципы построения колебательного контура гарантируют получение необходимого эффекта даже при относительно малой энергии подкачки в первичной катушке.

Дополнительная информация. Классическая схема генератора свободной энергии по Тесла чем-то напоминает обычный усилитель мощности, который работает в импульсном режиме.

Принципиальная схема современной версии генератора свободной энергии Тесла приводится ниже.

Схематическое представление генератора

В этом варианте исполнения модуль управления разрядами располагается отдельно от высоковольтной части колебательного контура. Постоянное питающее напряжение величиной порядка 10-ти Вольт подается на узел, генерирующий импульсы с формой, близкой к идеальному прямоугольнику.

Важно! Фактор прямоугольности формируемых импульсов очень важен для получения требуемого результата. Только резкие переходы от максимума к минимуму (крутые фронта) позволяют собрать генератор, работающий без существенных потерь мощности. В высоковольтном трансформаторе используется ферромагнитный сердечник в открытом исполнении, а соотношение витков в его обмотках (первичной и вторичной) выбрано так, чтобы на выходе получался импульсный сигнал требуемой амплитуды

Формируемые в контуре колебания заряжают и разряжают конденсатор C, включенный в разорванный резонансный контур

В высоковольтном трансформаторе используется ферромагнитный сердечник в открытом исполнении, а соотношение витков в его обмотках (первичной и вторичной) выбрано так, чтобы на выходе получался импульсный сигнал требуемой амплитуды. Формируемые в контуре колебания заряжают и разряжают конденсатор C, включенный в разорванный резонансный контур.

При полной зарядке ёмкости накопленный на её обкладках потенциал вызывает срабатывание подключенного параллельно (через индуктивность) разрядника, то есть управление работой последнего осуществляется самими сформированными импульсами. По завершении разряда всё возвращается в прежнее состояние до момента следующей полной зарядки C.

Как сделать бензогенератор, имея готовую силовую установку?

Ответ лежит на поверхности – подключить генератор к бензиновому мотору. Где его взять? Любой электромотор, при правильной организации системы возбуждения обмоток, становится генератором.

Генератор постоянного тока

Он получает крутящий момент от двигателя вашей машины, и вырабатывает напряжение постоянного тока 14 вольт.

Главное условие – исправный регулятор напряжения и желательно «живые» обмотки. Впрочем, если вам достался сгоревший экземпляр – не беда. Как снять якорь с электроустановки бензогенератора, знает любой радиолюбитель.

Перемотать обмотку можно за один вечер. В принципе, если вы самостоятельно сможете собрать мини электростанцию, можно садиться писать книгу: «Неисправности бензогенератора и способы их устранения». Это крайне полезный опыт.

Поломка источника электроэнергии в чистом поле – это проблема. А знакомый с устройством «Кулибин», сможет восстановить работу без вызова мастера.

Двигатель переменного тока

Тут ситуация сложнее (правда и дешевле, нет необходимости искать преобразователь). Любой электромотор можно сделать генератором, подключив его к приводу.

Для измерения оборотов потребуется тахометр. Вы подключаете мотор к сети, и замеряете скорость вращения. Добавляете к полученным оборотам 5%-10%, и получаете оптимальную скорость вращения вала для возбуждения обмоток генератора.

Самодельный бензогенератор на 220 вольт из движка от ГАЗ 21 и генератора переменного тока на 15 кВт — видео

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора

Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения

Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Асинхронный генератор: особенности и преимущества

По типу вращения ротора генераторы бывают синхронными и асинхронными. Первые имеют сложную конструкцию, а также более чувствительны к перепадам напряжения в сети, что сказывается на их продуктивности. Асинхронные, напротив, обладают более простым принципом действия, а также имеют отличные технические характеристики.

На роторе синхронного генератора помещаются магнитные катушки, что усложняет процесс движения ротора, в то время как ротор асинхронного генератора скорее похож на обычный маховик. Конструктивные особенности значительно влияют на КПД, и в синхронном есть его потери (до 11%). В асинхронном показатель потери энергии снижается до 5%, что делает его более востребованным не только в быту, но и в производстве.

Также есть и другие преимущества асинхронных генераторов:

  1. Более простой корпус защищает двигатель от попадания влаги и отработанного топлива, снижая необходимость частого технического обслуживания.
  2. Генератор устойчив к перепадам напряжения, а также имеет выпрямитель на выходе, который защищает подключенные электроприборы от поломки.
  3. Устройство способно служить источником питания для приборов, имеющих омическую нагрузку и высокую чувствительность к скачкам напряжения: сварочные аппараты, компьютерная и вычислительная техника, лампы накаливания.
  4. Обладает высоким КПД, который сочетается с минимальным клирфактором (показатель потери энергии, которая затрачивается на нагрев самого прибора).
  5. Имеет срок службы не менее 15 лет, поскольку все используемые детали достаточно надежные и не поддаются быстрому износу в процессе эксплуатации.

Все эти преимущества дают повод к использованию именно асинхронного агрегата, а простота его конструкции позволяет собрать в домашних условиях.Вариант электрогенератора с асинхронным двигателем Toyota

Применение

В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:

  1. Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
  2. Работа в качестве ГЭС с небольшой выработкой.
  3. Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
  4. Выполнение основных функций сварочного генератора.
  5. Бесперебойное оснащение переменным током отдельных потребителей.

Генератор свободной энергии Тесла

Известного всему миру физика в учебниках по предмету упоминают крайне редко. Хотя его открытие переменного тока сейчас использует всё человечество. У него более 800 зарегистрированных патентов на изобретения. Вся энергетика прошлого века и сегодняшних дней основана на его творческом потенциале. Несмотря на это, часть его работ была скрыта от широкой общественности.

Он участвовал в разработках современного электромагнитного оружия, будучи директором проекта «Радуга». Известный филадельфийский эксперимент, телепортировавший большой корабль с экипажем на немыслимое расстояние – его рук дело. В 1900 году физик из Сербии внезапно разбогател. Он продал часть своих изобретений за 15 миллионов долларов. Сумма в те времена была просто огромна. Кто приобрёл секреты Теслы, остаётся тайной. После его смерти все дневники, которые могли содержать и проданные изобретения, пропали бесследно. Великий изобретатель так и не открыл миру, как устроен и работает генератор свободной энергии. Но, возможно, на планете есть люди, обладающие этой тайной.

Приступаем к сборке агрегата

Этап первый: закрепляем двигатель от мотокосы

Для начала берем отрезок доски и обрезаем ее предварительно по размеру нашей станины. Желательно брать увесистый материал, чтобы наше оборудование имело прочную и надежную основу.

Размечаем положение двигателя от мотокосы. С помощью шаблона из бумаги размечаем точно отверстия, засверливая их дрелью или шуруповертом.

Примеряем оба двигателя на станине. Отсоединяем топливный бачок, и на посадочные места закрепляем двигатель от мотокосы.

Этап второй: крепим движок постоянного тока

Размечаем положение движка. Расстояние от обеих валов двигателей должно быть несколько сантиметров, чтобы избежать трения между ними.

Центруем валы наших движков. Расхождение по центрам проще всего откорректировать какими-либо прокладками, или же попросту подправить посадочное место на деревянной станине. Сделать это можно обычной стамеской. Чем меньше будет люфт между валами, тем меньше будет вибрация от агрегата и износ движущей части.

Размечаем патрубки. Чаще всего валы двигателей различаются по размеру диаметров. Это также поправимо, если в качестве соединительных патрубков использовать ПВХ шланги разных диаметров. Их гибкость поможет сгладить мельчайшую неточность в оцентровке валов. В нашем случае автор использовал два шланга разного диаметра, вставив один в другой.

Отрезав патрубки нужной нам длины, насаживаем с обеих сторон три хомута, поджимая их отверткой.

Закрепляем двигатель постоянного тока на саморезы, проложив их предварительно шайбами. Валы соединяем от руки и поджимаем хомуты отверткой.

Теперь можно закрепить и топливный бачок. Справиться с этой задачей не сложно, используя длинный саморез и обрезанный колпак от дюбель-гвоздя. Не забываем подсоединить топливные трубки.

Заведя топливный двигатель стартером, измеряем напряжение на выходе вольтметром. Отверткой регулируем подачу топлива, и количество оборотов, от которого и зависит напряжение. Ориентируясь по номиналу инвертора, выставляем выходящее напряжение с небольшим запасом.

Этап третий: подключаем инвертор

Зачищенные предварительно концы кабелей от двигателя постоянного тока закрепляем на клеммах инвертора. Индикатор питания сразу покажет активность прибора.

Простой контролькой (лампочкой с отрезком кабеля и вилкой на конце) проверяем работу нашего чудо-генератора.

Для подключения электродвигателя к инвертору используем клеммы.

Этап четвертый: кнопка выключения двигателя

Поскольку ведущий у нас двигатель, создающий механическое вращение, ему необходим выключатель. Кнопка выключения идет в комплекте с устройством, поэтому ей необходимо лишь найти удобное место.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Вот он

Что мы здесь видим?

Видим колебательный контур L1 C1, А дальше видим каждой твари по паре: Два транзистора: VT1, VT2 Два конденсатора обратной связи: С2, С3 Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков

Устройство бензогенератора

Принцип работы бензинового генератора таков же, как и большинства любых электростанций, основанных на преобразовании механической энергии в электрическую. Внешняя сила вращает якорь генератора, и в обмотках статора наводится электрическое напряжение. В случае бензогенератора якорь вращает бензиновый двигатель. Впрочем, вместо бензинового с тем же успехом может использоваться и дизельный двигатель. Отличие заключается лишь в используемом топливе – бензина или дизельного.

Итак, что входит в устройство бензинового генератора? Основные части:

  • Бензиновый двигатель (двух,- или четырехтактный);
  • Генератор;
  • Схема контроля, защиты и управления;
  • Устройство стабилизации оборотов;
  • Бак для топлива;
  • Рама для крепления всех составляющих частей.

Виды и их особенности применения

Технологическое оборудование этого класса классифицируется по следующим параметрам:

  1. Сфере иcпользования;
  2. Типу сжигаемого топлива;
  3. Числу фаз;
  4. Мощности.

Начнем рассмотрение с области применения. В зависимости от этого фактора генераторы подразделяются на бытовые и профессиональные, хотя простой электрогенератор можно собрать и своими руками. Первые обычно выполнены в виде компактного силового агрегата и имеют мощность от 0,7 до 25 кВт. Они укомплектовываются двигателем внутреннего сгорания, работающем на бензине или дизельном топливе и оснащенном системой воздушного охлаждения. Такие устройства применяются в качестве резервных источников энергии для бытовых приборов и электроинструмента, как и электрогенератор с самозапиткой собранный своими руками.

Они отличаются небольшим весом и низким уровнем шума, поэтому находят широкое применение в частных домовладениях. Эксплуатация и обслуживание таких агрегатов не представляет сложности и справиться с ней сможет каждый, как и собрать электрический генератор своими руками.

Смотрим видео, немного о генераторах их видах и приемуществах:

Профессиональное оборудование рассчитано на работу в качестве постоянного источника энергоснабжения. Обычно такие генераторы используются в медицинских учреждениях и административных зданиях, а также в строительной отрасли при проведении аварийных и других работ. Агрегаты этого класса имеют значительный вес и не отличаются тихой работой, что значительно усложняет их транспортировку и выбор места для установки. Но в то же время они обладают более высоким моторесурсом и надежностью при эксплуатации в экстремальных условиях. К достоинствам таких электрогенераторов стоит отнести и экономное расходование топлива.

Следующий параметр, используемый при классификации – тип топлива:

  • Бензин;
  • Дизель;
  • Газ.

Первые имеют небольшой диапазон мощностей, но в то же время отличаются мобильностью и простотой в применении, как и электрогенератор используемый для дома, сделанный своими руками. Они используются в качестве резервных источников, так как обладают небольшим моторесурсом и высокой стоимость получаемой энергии.

Дизельные агрегаты имеют широкий диапазон мощностей и могут использоваться для электроснабжения общественных учреждений и даже небольших поселков. Однако они не отличаются компактными размерами и тихой работой, поэтому должны быть установлены на укрепленном фундаменте в отдельном помещении.

Газовые электрогенераторы применяются в основном на промышленных объектах. Они отличаются высокой экологичностью и дешевизной вырабатываемой энергии.

Различаются силовые установки и по количеству фаз на:

  • Одно;
  • Трех.

Первые подходят для приборов с однофазным питанием в соответствующих сетях. Вторые могут служить источником энергии для различных приборов и устанавливаются в домах с трехфазной разводкой сети.

Прибор Вега и его особенности

Бтг работают по схеме захвата свободной энергии, после чего идёт её преобразование в индукционный ток. Адамс и Бедини посвятили свою жизнь изучению этого физического явления. Приборы можно применять как автономное обеспечение электроснабжением для:

  • частных домов;
  • фермерских или же лесных угодий;
  • судоходства;
  • автомобилестроения;
  • самолётостроения и космонавтики.

Эффективность бестопливных генераторов на магнитах зачастую проявляется в местах, которые не получается обеспечить топливом, а силы природной энергии недостаточно для полного обеспечения электричеством. Следует понимать, что устройство Адамса не является вечным генератором электричества. При эксплуатации ему необходим периодический ремонт. Также агрегат требует постоянного обслуживания.

Бестопливный генератор на магнитах от производителя «Вега» имеет ряд преимуществ:

  1. Прибор можно использовать в любых погодных условиях, а также вдали от сетей электроснабжения.
  2. Топливом является кинетическая энергия.
  3. Ограничения по производству электричества отсутствуют.
  4. Полностью безопасен для организма человека и природы.
  5. Сделать бестопливный генератор можно своими руками.
  6. Агрегат очень компактный.
  7. Минимальный срок эксплуатации составляет 20 лет.

Конструкция асинхронного электродвигателя

Асинхронный электродвигатель включает в себя две основные детали: неподвижный статор и вращающегося внутри него ротор. Ротор вращается на подшипниках, закрепленных в съемных торцевых частях. Ротор и статор содержат электрические обмотки, витки которых уложены в пазы.


Статорная обмотка подключается к сети переменного тока, однофазной или трехфазной. Металлическая часть статора, куда она уложена, называется магнитопроводом. Он выполнен из отдельных тонких пластин с покрытием, изолирующих их друг от друга. Этим исключается появление вихревых токов, делающих работу электродвигателя невозможной из-за возникновения чрезмерных потерь на нагрев магнитопровода.

Выводы от обмоток всех трех фаз располагаются в специальном боксе на корпусе электродвигателя. Его называют барно, в нем выводы обмоток соединяются между собой. В зависимости от питающего напряжения и технических данных мотора выводы объединяются либо в звезду, либо в треугольник.


Обмотка ротора любого асинхронного электродвигателя похожа на «беличью клетку», так ее и называют. Она выполнена в виде ряда токопроводящих алюминиевых стержней, рассредоточенных по наружной поверхности ротора. Концы стержней замкнуты, поэтому такой ротор называют короткозамкнутым. Обмотка, как и статорная, расположена внутри магнитопровода, также набранного из изолированных металлических пластин.

Фото-пример сборки ветряка по шагам

Рассмотрим пример сооружения ветряка на 24 В, собранного на базе автомобильного генератора. Самоделка начинает стабильно работать при силе ветра 5 м/с. В средне-ветреную погоду с порывами от 15 м/с установка поставляет от 8 до 11 А, в дни с сильными ветрами КПД увеличивается. Мощность не более 300 Вт.

Фактически вся работа выполнена, остается соединить разрозненные компоненты полезной в быту установки:

Сооруженная своими руками установка развивает 24 В, применять ее можно для зарядки аккумуляторов мобильной техники и для поставки энергии в линии освещения с энергосберегающими светильниками.

Эффект обратимости

Известно, что принцип работы любого генерирующего электрический ток устройства основан на преобразовании одной формы энергии (тепла, например) в необходимый для электропитания оборудования вид. Можно воспользоваться так называемыми альтернативными (их ещё называют возобновляемыми) источниками энергоснабжения, однако указанный способ связан с ещё большими материальными и производственными издержками.

Гораздо проще и экономнее сделать самодельный генератор тока, воспользовавшись потенциальными возможностями имеющегося в распоряжении пользователя старого асинхронного электродвигателя.

Основанием для такого изготовления является известный в электротехнике принцип обратимости процессов взаимодействия электромагнитных полей, что объясняется спецификой происходящих при этом электрических процессов. Если в двигателе трёхфазную энергию тока используют для превращения её в механическое вращение вала, то в генераторе всё происходит строго наоборот. В этих агрегатах принудительное вращение якоря трансформируется в текущий по фазным обмоткам электрический ток, мощность которого расходуется на обслуживание потребителя (смотрите рисунок ниже).


Принцип работы генератора

Таким образом, перед тем, как сделать образец самодельного электрогенератора из бывшего в употреблении асинхронного двигателя в самом общем случае необходимо проделать следующие манипуляции:

  • Клеммы, на которые подаётся трёхфазное (или однофазное – для коллекторных образцов изделий) напряжение нужно превратить в выходные контакты генератора;
  • К подвижной части генератора, от которой работал тот или иной механизм (станок, например) следует приспособить привод от внешнего источника механического вращательного импульса;

Дополнительная информация. В качестве такого источника может применяться любой подходящий для конкретных условий движитель, вращающийся под воздействием энергии сгорающего топлива (бензина, газа или солярки). При наличии в частном хозяйстве ветряка или самодельной водяной мельницы решение вопроса с приводом существенно упрощается.

Из-за дороговизны бензина в условиях загородного хозяйства единственно приемлемым вариантом является изготовление небольшой электростанции, работающей от дизельного движка или на газу.

В этом случае работающий на сравнительно дешёвом топливе двигатель через специальную приводную муфту подсоединяется к валу сооружаемой конструкции, которая после небольшой доработки превращается в генератор переменного тока.

Как делать нельзя?

При подключении бензогенератора к дому нельзя подсоединить его к любой находящейся рядом розетке, заблаговременно выключив автоматы на распределительном щитке.

Мощность генератора может быть намного больше пропускной способности розетки (обычно последняя рассчитана на 3500 Вт). Результат – короткое замыкание из-за превышения максимальной нагрузки, возгорание.

Если при этом еще и не отключать автоматы основной линии, то подача энергии в сеть приведет к поломке генератора.

Подключение питания дома через розетку допускается только для маломощных (до 4 кВт) установок. Но даже в этом случае лучше подсоединять к генератору электроприборы через удлинитель. Для мощных станций необходимо использовать систему автозапуска – АВР либо рубильник реверсивного типа.

Современный взгляд и новые разработки

Следует отметить, что с точки зрения физики понятия свободной энергии как такового не существует. Но практика показала, что энергия обладает постоянством. Если рассматривать этот вопрос детально, то генераторное устройство выделяет мощность, которая после выработки возвращается обратно. Это приводит к тому, что приток энергии посредством гравитации и времени не виден пользователю. Если образуется процесс больше трех измерений, то появляется свободное перемещение частиц.

Одним из самых известных ученых, который интересовался такими разработками, был Джоуль. С целью выработки мощности использование схем генераторных устройств приведет к серьезным потерям. Это связано с тем, что распределение в системе централизовано и выполняется под контролем.

Из последних новых разработок следует выделить простой двигатель Адамса, а ученый Флойд смог вычислить состояние материала в нестабильном виде.

Ученые создали много конструкций и изобретений по получению энергии, но на рынке пока еще не появилось ни одного устройства, которое можно использовать в быту.

Андрей Тиртха рассказал о получении свободной энергии в домашних условиях.