Получение энергии из воздуха

Принцип работы

Чтобы разобраться с главным принципом, по которому работают такие устройства, сначала надо вспомнить одно правило — напряжённость в каждой точке устройства прямо пропорциональна квадрату тока, который протекает по проводнику. При появлении электрического тока вокруг последнего всегда появляется поле. Оно способно распространять своё действие на большие расстояния. Легко создать и в генераторе Романова свободную энергию по инструкции своими руками.

Вам это будет интересно Особенности ШДУП У4

Схему обеспечивает постоянная подкачка энергии из внешнего источника. Образуется она за счёт переменного ВЧ тока. Результат — поле начинает пульсировать, распространять свой сигнал. Энергетические характеристики, таким образом, проявляются в кинетическом виде. Если этот процесс форсировать, удастся получить интересный эфирный эффект. Он проявляет себя как волна, обладающая мощной ударной характеристикой. Электромагнитные установки работают иначе.

Интересно. Ситуация способствует переходу к оперированию с большими мощностями.

Генераторы Тесла — устройства, в которых удаётся реализовать этот процесс. Природный аналог — эфирный разряд молнии, электрогенераторы тоже могут создавать такую энергию.


Бесплатное электричество от магнитов

Энергия магнитного поля планеты

Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.

Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.

Устройство, получающее электричество из природных источников, должно состоять из следующих элементов:

  • проводник;
  • заземляющий контур, к которому подсоединен проводник;
  • эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).

Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.

К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.

Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.

Видео по теме:

Из этого следует

Электроэнергия из земли потенциально может быть добыта, но сегодня нет технологий, которые позволяют сделать это эффективно. Если есть свой дом с участком, то можно поэкспериментировать с созданием земляной батареи из листов меди и алюминиевой фольги – чертежи и фотографии легко найти в Интернете. Но практика показывает, что мощность сделанного конденсатора заметно ниже заявленной и конструкция быстро выходит из строя. При этом финансовые затраты на материалы вряд ли когда-либо окупятся.

Принцип работы

Трансформатор Тесла состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение, и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.


Простая схема работы катушки тесла.

Тесла обладает тремя основными характеристиками – резонансной частотой вторичного контура, коэффициентом связи первичной и вторичной обмоток, добротностью вторичного контура.

Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности.

Коэффициент связи определяет, насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Аналогия с качелями

Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качели – это ток во вторичной обмотке, а высота подъема – наше долгожданное напряжение.

Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха, и мы видим наши красивущий стример.

Естественно, раскачивать качели нужно не абы как, а в точном согласии с их собственными колебаниями. Количество колебаний качелей в секунду называется “резонансная частота”.

Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице. Наши качели с большим коэффициентом связи — это аналог обычного трансформатора.

Будет интересно Как сделать регулятор мощности на симисторе своими руками

Теперь рассмотрим ситуацию, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний. Такие качели и есть аналогом трансформатора Тесла. Чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше.

Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качелей (максимальной длинны стримера).

Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем. Кратко о принципе работы трансформатора можно посмотреть в видеоролике.

Генератор Тесла: как работает, как сделать бестопливный прибор своими руками в 220в — схема

Изобретения знаменитого сербского учёного Николы Тесла намного опередили развитие науки в области альтернативных источников энергии. Его считают человеком, подарившим электричество людям.

Созданные им устройства, в том числе электродвигатель, безтопливный генератор, резонасный трансформатор и другие открытия создали стартовую площадку для перехода на новый этап промышленного развития. Настоящей мечтой гения стала идея подарить людям бесплатное электричество.

Генератор Тесла, по замыслу изобретателя, мог передавать энергию электрического тока беспроводным способом на большие расстояния.

Что это такое

Фактически, безтопливный электрический генератор — это вечный двигатель, для работы которого не нужны дополнительные ресурсы. Получение свободной энергии — мечта человечества, которая станет толчком для переустройства общественных отношений общества, приведёт к эволюционному скачку развития.

Эфир Тесла

Реализовать идею получения альтернативной энергии мог бы стать генератор Тесла, который черпает энергию из эфира.

Важно. Много ходят споров, существует ли эфир. По мнению Н. Тесла — это легчайший газ, из почти неуловимо малых частиц

Они движутся с невообразимой скоростью. Н

По мнению Н. Тесла — это легчайший газ, из почти неуловимо малых частиц. Они движутся с невообразимой скоростью. Н.

 Тесла считал, что каждый вид волны работает на своей частоте и в определённой среде. Эфир — среда для почти мгновенной передачи электромагнитных волн.

Его поле способно переносить на громадные расстояния электромагнитные, гравитационные волны.

Принцип действия безтопливного генератора

Эфир — источник неограниченной энергии. Электромагнитные волны пронизывает окружающую нас атмосферу. У земли низкий энергетический потенциал, у света, солнечных лучей — высокий.

Если установить улавливатель между положительно заряженными частицами света и отрицательно заряженным потенциалом земли, то можно получать электрический ток. В эту цепочку нужно вставить накопитель конденсатор, к примеру, литиевую батарейку.

Она будет улавливать и накапливать энергию. В момент подключения к конденсатору источника питания, произойдёт разрядка накопителя.

Основные звенья безтопливного генератора Н. Тесла состоят:

  1. Расположенного над землёй приёмника.
  2. Накопителя-конденсатора.
  3. Заземление.

Обратите внимание! Безтопливный электрогенератор базируется на получении электрического тока из эфира. Используют два разно заряженных потенциала. Земля — ресурс отрицательных электронов, световая волна, в том числе от солнца — положительных

Один из электродов заземляется, другой — выводится на экранированный экран

Земля — ресурс отрицательных электронов, световая волна, в том числе от солнца — положительных. Один из электродов заземляется, другой — выводится на экранированный экран.

В качестве накопителя в цепи устанавливают конденсатор, который аккумулирует энергию.

Схема, как сделать безтопливный генератор Тесла своими руками

Энергия из ДНК

Оказалось, что органические молекулы тоже преобразуют солнечную энергию в электричество. В 2021 году немецкие ученые сумели супрамолекулярную — то есть более сложную, чем обычная молекула — систему на основе ДНК.

Структура супрамолекулы

(Фото: frontiersin.org)

Основа системы — фуллерен, «футбольный мяч» из 60 атомов углерода. К нему крепится краситель, который поглощает солнечный свет и отдает получившуюся энергию фуллерену. Но возникает проблема: если не упорядочить такие супрамолекулы, ток между ними будет протекать с трудом, а со временем и вовсе затухнет.

Ученые предложили такое решение: закрепили супрамолекулы на основе фуллеренов и красителя на спирали ДНК. Так движения электронов становятся упорядоченными, а электрический ток не затухает.

Как это применять: исследователи не обещают, что в скором времени на всех крышах появятся солнечные батареи из ДНК, но развивать это направление планируют. По их прогнозам, технология будет дешевле, прочнее и долговечнее, чем солнечные батареи на основе кремния.

Все ли так гладко?

Казалось бы, такая технология электроснабжения частного дома должна бы уже давно вытеснить с рынка традиционные централизованные методы обеспечения энергией. Почему же этого не происходит? Есть несколько аргументов, которые свидетельствуют не в пользу альтернативной энергетики. Но их значимость определяется в индивидуальном порядке — для части владельцев загородных домов актуальны одни недостатки и совсем не представляют интереса другие.

Для больших загородных коттеджей может стать проблемой не слишком высокий КПД альтернативных энергетических установок. Естественно, локальные гелиосистемы, тепловые насосы или геотермальные установки не могут сравниваться с продуктивностью даже самых старых ГЭС, ТЭЦ и тем более — атомных электростанций.Впрочем, этот недостаток часто минимизируется за счет установки двух или даже трех систем, использованием их больше мощности. Следствием этого может стать другая проблема — для их монтажа потребуется более обширная площадь, выделить которую получается не во всех проектах домов.

Для бесперебойного обеспечения привычного для современного дома числа бытовых приборов и отопительной системы требуется большая мощность. Поэтому в проекте должны предусматриваться такие источники, которые смогут продуцировать такую мощность. А это требует солидных капиталовложений — чем мощнее оборудование, тем оно дороже.

Кроме того, в некоторых случаях (например, при использовании энергии ветра) источник может не гарантировать постоянства выработки энергии. Поэтому необходимо оснастить всю коммуникацию накопительными устройствами. Обычно с этой целью устанавливаются аккумуляторы и коллекторы, что влечет все те же дополнительные расходы и необходимость в выделении большего количества квадратных метров в доме.

Ветрогенератор из комнатного вентилятора

Простейший ветровой генератор можно изготовить из обычного бытового вентилятора.
Для этого потребуется небольшой генератор от автотехники или двигатель-генератор, которые необходимо закрепить на стойке комнатного вентилятора. Для этого можно использовать любую пластиковую емкость, внутрь которой и помещается преобразующее устройство. Кромке этого, в емкость помещается диодный мост, к которому присоединяются провода, которые выводятся на наружную поверхность емкости.

На вал генератора (двигателя-генератора) одеваются лопасти вентилятора, а к пластиковой емкости крепится хвостовик, который можно изготовить из подручных материалов (пластик, фанера, оргстекло и т.д.).

Вся собранная конструкция помещается на стойку вентилятора, для этого можно использовать обрезок пластиковой или иной легкой трубы, диаметром несколько меньшим, чем отверстие в стойке. Это позволит конструкции вращаться вокруг своей оси, в зависимости от направления ветра.

Крепление деталей и узлов проверяется, при необходимости выполняется их укрепление. К выведенным проводам подсоединяется нагрузка. Устройство готово к работе.

Электричество из дерева

Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.

Исследователи изменили химический состав древесины. Они поместили ее в смесь перекиси водорода и уксусной кислоты, растворили один из компонентов древесной коры — лигнин — и оставили только целлюлозу. В результате древесина превратилась в «губку», которая после сжатия самостоятельно возвращается в исходную форму. По словам ученых, такая губка генерирует электрическое напряжение в 85 раз выше, чем обычное дерево.

Так выглядит древесина после растворения лигнина

(Фото: САУ Nano / Empa)

Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.

Как избежать мошенников

Здесь все очень просто, следуйте не сложным советам:

  1. Думайте головой.
  2. Расскажите своим друзьям и дайте почитать эту статью.
  3. Даже если очень заинтересовал прибор, попросите привезти его лично и показать работу. Продавец откажется в любом случае, а вы попробуйте увеличить цену в несколько раз. Вы думаете если будет большая цена никто не приедет? Конечно, нет, ведь они знают, что продают полную туфту.

А на всякий случай покажем несколько промышленных бестопливных генераторов, которые успешно продаются и сейчас.
Статья по теме: Выгодно ли устанавливать солнечные батареи в частном доме.

Гениальный провидец и гость из будущего

Самым известным и наиболее загадочным энтузиастом идеи был серб Никола Тесла. Генератор свободной энергии — лишь одно из изобретений гениального ученого, обладателя почти тысячи патентов. Он родился в середине XIX века на территории нынешней Хорватии. У него, как и у некоторых других нетипичных людей, существует как бы две биографии.

Великий ученый

Считается, что сербский ученый не только положил начало современной электротехнике, но и внес важнейший вклад в продолжение промышленной революции — так называемый второй ее этап. Тесла получил известность в различных областях науки. На его счету устройства переменного тока, синхронный генератор, асинхронный двигатель и множество других изобретений. Широко известны официальные данные из его биографии:

  1. С 1884 года Никола Тесла жил в США. За короткое время сотрудничества с Эдисоном он на спор смог улучшить множество его аппаратов на постоянном токе. Позже пути ученых разошлись, грянула знаменитая «Война токов».
  2. В 1887 году серб создал компанию Tesla Electric Company.
  3. Занимался изучением высокочастотных магнитных полей. Часть его разработок и сейчас используется в медицине и электротерапии. Показательно, что ученый сначала испытывал действие переменных токов на себе.
  4. Разработал теорию полей и способы передачи электроэнергии с помощью многофазного переменного тока. Сейчас они являются основой мировой энергетической системы. Например, свет поступает в дома и на предприятия.
  5. Еще до Маркони описал принципы радиосвязи. Позже усовершенствовал передачу радиочастот на большие расстояния.
  6. Придумал устройства для обнаружения подводных лодок и подавления звука.
  7. С его подачи на улицах городов появилась наружная реклама на основе светящихся трубок.
  8. Сделал первый электродвигатель. Провел успешные испытания электромобиля. Изобрел электрическую подводную лодку.
  9. Работал над изучением и применением рентгеновских лучей.
  10. Предсказывал появление оружия типа атомной бомбы, продумывал способы изучения ядра.
  11. Первым построил аппарат, которым можно было управлять дистанционно.
  12. Неоднократно озвучивал идеи, используемые позже в развитии робототехники.

Вам это будет интересно Понятие и нахождение электрической мощности по формулам

https://youtube.com/watch?v=yPvQOPNYiS4

Загадочный волшебник

Многие изобретения ученого ушли вместе с ним. Успешные эксперименты с эфиром не объяснены до сих пор, хоть известен принцип работы генератора Теслы. Бесплатная энергия из эфира при этом не была его самоцелью. Ученый стремился к познанию мира. Революционеров на этом поприще всегда окружают тайны. Для понимания загадки великого серба интересно будет узнать:

  1. Будущий инженер и изобретатель мог стать священником. Он получил не только техническое, но и философское образование.
  2. В молодости увлекался игрой в карты, пока не проигрался до нитки, а долги не пришлось выплачивать родственникам.
  3. В США после ссоры с Эдисоном был бродягой, подсобным рабочим, нанимался на поденщину, рыл канавы.
  4. Никогда не был женат. Ни с кем не сходился близко. Предпочитал работать в одиночку.
  5. Проник в тайну шаровых молний, умел создавать их искусственным путем.
  6. Был суеверен, обладал даром предвидения. Несколько раз, используя эту способность, спасал людей от возможных неприятностей и даже гибели.
  7. Обладал невероятной работоспособностью. Спал по 2 часа в сутки.
  8. Начинал строить уединенную лабораторию на тогда пустынном Лонг-Айленде. Официально в этом месте должна была появиться башня под радиостанцию. Неофициально именно здесь могли прорабатываться на практике идеи использования атмосферного электричества. Для завершения проекта якобы не хватило денег. Впоследствии база была уничтожена.
  9. С башней на Лонг-Айленде связаны слухи по разработке лучей смерти, направленного боевого излучателя и ультразвуковой пушки. Позже идеи серба могли быть применены и при создании лазера.
  10. Во время Первой мировой войны Тесла не только собирал средства для помощи Сербии, но и задумывался над созданием абсолютного оружия, способного разом уничтожить вражеские армии. Неизвестно, как далеко он зашел на этом пути.
  11. Некоторые исследователи связывают с ученым тайну Тунгусского метеорита. Он действительно интересовался незадолго до падения небесного тела отдаленными и наиболее незаселенными территориями Сибири.
  12. В Индийском океане также наблюдались события, подобные тунгусским. Серба обвиняли в том, что он «раскачал» здесь эфир.

Вам это будет интересно Устройство и применение резистора в электрической цепи

«Бесконечная» энергия из воздуха

В 2020 году ученые из Массачусетского университета создали Air-gen — генератор, который создает электричество с помощью натурального белка и влаги из воздуха.

Графическое изображение пленки из белковых нанопроводов, вырабатывающих электричество с помощью влаги из атмосферы

(Фото: UMass Amherst / Yao and Lovley labs)

С помощью протеобактерий Geobacter ученые выращивают белок, который может проводить ток. Из него делают пленку толщиной менее 10 микрон — в несколько раз тоньше, чем человеческий волос — и помещают между двумя электродами. Белок забирает влагу из воздуха и за счет тонких пор создает ток между электродами.

Лучшие результаты Air-gen показывает при влажности в 45%, но справляется и в засушливых регионах вроде Сахары. Генератор не зависит от погодных условий и работает даже в помещении.

Как это применять: пока мощности Air-gen хватает только для питания мелкой электроники. В скором времени ученые разработают версию для мобильных телефонов и смарт-часов, чтобы те никогда не разряжались. А если у исследователей получится совместить Air-gen с краской для стен, в домах появится бесконечный источник электроэнергии.

Атмосферный энергетический потенциал

Атмосфера Земли обладает огромными потенциальными ресурсами. В промежутке между ее поверхностью и границей ионосферы разность потенциалов может достигать 300 тысяч вольт. Величина напряженности электрического поля непосредственно возле поверхности может доходить до 150 вольт на 1 метр. Это значение постепенно уменьшается с увеличением высоты. Например, на расстоянии 30 километров напряженность снижается до 1 вольта на метр.

Достигая ионосферы, напряженность электрического поля устремляется к нулю, поскольку проводимость этой среды значительно увеличивается под действием ионизации. Саму ионизацию вызывает солнечное излучение.

Многие мечтали приручить энергию разряда молнии. Однако такое бесплатное электричество сопряжено с огромными техническими трудностями в основном из-за кратковременного и непостоянного действия молнии. Кроме того, мощный разряд требуется уловить и переправить в специальный накопитель, который еще не изобретен. Следует учитывать и тот фактор, что место удара молнии нельзя предсказать заранее, а высокая мощность разряда не поддается контролю и управлению, то есть, нормальное электроснабжение невозможно.

Теоретически добывают электричество с помощью двух металлических листов, размером 1 х 1 м, расположенных по высоте на расстоянии 500 метров друг от друга. При такой расстановке между ними должно возникнуть расчетное напряжение примерно 80 вольт. Полученная таким образом электростанция на практике оказывается неэффективной и нецелесообразной с учетом конструкций, необходимых для расположения листов. То есть, в настоящее время каких-то действенных способов получения подобной энергии до сих пор не придумано. Тем не менее, эксперименты в этой области продолжаются.

Солнечные панели, которые позволяют неплохо сэкономить

 Многие мечтают получать электричество из ничего для своего дома и при этом пользоваться им в полной мере. Такая возможность предоставляется обладателям солнечных панелей, которые преобразовывают солнечную энергию в электрическую. Однако данную пластину можно сделать самому. Для этого надо:

  1. Сделать прозрачный каркас для солнечной батареи. Тут отлично подойдет оргстекло. Это нужно для защиты батареи от дождя и снега.
  2. Далее надо изготовить корпус. Тут можно использовать фанеру, металлические листы.
  3. Так как основа любой солнечной батареи специальные кристаллы, то их надо будет обязательно купить. Потом надо будет спаять их в схему (последовательно, чтобы увеличить напряжение). Делать это следует аккуратно, чтобы не повредить конструкцию.
  4. Теперь положить эти фотоэлементы в каркас и сделать монтаж корпуса.

Выполнив эти незамысловатые действия вы получите халявное электричество своими руками. Стоит добавить, что лучше делать батерею, которую можно наклонять в разные стороны. Это пригодится, так как зимой необходимо располагать батарею вертикально, чтобы ее не засыпало снегом. В противном случае вам придется каждый раз ее чистить.

Крепить конструкцию надо на крышу дома. Обязательно на самую солнечную сторону.

Метод получения электричества по Белоусову

Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.

На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:

Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.

Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.

Наверняка вы не знаете:

Что это такое?

Бестопливный генератор – не самое сложное устройство для сборки своими руками. Проще всего использовать в конструкции неодимовые магниты

Обычный двигатель во время работы вырабатывает электрический ток с помощью медных или алюминиевых катушек, но для этого важно наличие постоянного источника электроэнергии извне, потери по показателям на выходе получаются слишком большими. Но если в генераторе без топливной электроэнергии не предусмотрено использование меди или алюминия в качестве основных материалов, энергии в пустоту уходит намного меньше

Этому способствует наличие постоянного магнитного поля, которое и генерирует импульс для работы двигателя.

Важно! Данная конструкция будет работать только при условии использования неодимовых магнитов, они работают эффективнее других аналогов и за счет общего взаимодействия не требуют подзарядки извне. Что касается нетрадиционных источников питания, то альтернативных вариантов существует достаточно много

Выгоду электродвигателя уловить просто: существенно снижается стоимость поездок. Главным в конструкции служит двигатель, генерирующий уровень постоянного тока с аккумулятором в комплекте, именно он запускает двигатель, а тот, в свою очередь, дает старт работе генератору переменного тока. В результате батарея не разряжается.

Традиционными источниками бестопливной энергии являются внешние факторы, такие как ветер или вода, но для генератора они не подойдут. На сегодняшний день магнитные генераторы по своим показателям в несколько раз превосходят уже всем привычные солнечные батареи. При этом сфера применения такого генератора ограничивается тем, насколько мощный двигатель тока используется в конструкции и другими компонентами.

Немного о том, что такое бесплатное электричество

На данный момент стоимость коммунальных услуг достаточно высока. Поэтому многие люди задумываются об источниках необходимых ресурсов, более дешевых, чем централизованный газ и электроэнергия.

Для обеспечения дому тепла с минимальной затратой средств был изобретен твердотопливный пиролизный котел. В данном агрегате газ образуется за счет перегорания твердого топлива. Этого прибора достаточно для обогрева целого дома.

С электричеством все намного сложнее. На данный момент в современных домах столько электроприборов, что обеспечить достаточное количество энергии альтернативными способами для них всех, действительно тяжело. Однако вы можете с помощью необычных способов получения бесплатной электроэнергии, сделать максимально дешевым обслуживание некоторой части электроприборов. Давайте посмотрим, что это за способы.

  • Самым распространенным считается электричество, полученное от энергии солнца;
  • Также пользуется дармовая энергия, получаемая из воздуха и атмосферы;
  • Очень интересно получение статического электричества из земли;
  • Электрический ток также можно вырабатывать из эфира;
  • На грани фантастики кажется халявное электричество из нечего;
  • Как оказалось, из магнитного поля тоже можно добывать электричество;
  • Возможна добыча электричества из дерева, воды и других подручных средств.

Некоторые из этих способов способны обеспечить электричеством лишь маленькую лампочку. Других хватит, чтобы заставить работать как минимум половину электроприборов в доме.

Сегодня мы расскажем вам о нескольких, самых перспективных альтернативных способах добычи электричества. Также мы поговорим о возможности получения электроэнергии из нечего.

Мини-ветряк с генератором, установка за окно. Из доступных материалов без токарных работ

Эй,диджей поставь мой компакт-диск, да? /Народная мудрость/ Наверное самый маленький в мире действующий ветряк с генератором. А не поставить ли нам за окна мини-турбинки для нужной генерации?

Читать далее

Прочие варианты

Существуют и более экзотические варианты использования альтернативной энергии. Но их вряд ли можно использовать в частных домах в массовом порядке. Например, инфракрасные излучатели. Их ещё называют эко обогревателями. Могут быть использованы, как в частных домах, так и в офисном здании и в производственных помещениях. Такие установки основаны на передаче тепла в форме инфракрасного излучения. Оно нагревает предметы, а те, нагреваясь, передают тепло в окружающее пространство. Их в основном используют для нагрева отдельных предметов или полезной части пространства. Есть настенные, напольные, потолочные ИК излучатели.