Как собрать солнечную батарею своими руками из подручных средств

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • паяльник;
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Собирать инвертор самостоятельно имеет смысл только при небольшом энергопотреблении. Контроллер заряда в простом исполнении не так дорого стоит, поэтому нет особого смысла тратить время на изготовление прибора.

https://youtube.com/watch?v=V62weyX7Wh0

Монтаж корпуса

Стандартное изготовление одной солнечной батареи предполагает использование 36 элементов размером пластин 81×150 мм. При расчете размеров необходимо между элементами оставлять небольшое расстояние 3-5 мм, которое будет технологически учитывать изменения размеров основы в результате атмосферных воздействий. Размер заготовки с учетом допуска 835х690 мм с шириной уголка каркаса 35 мм.

Вначале берем алюминиевый уголок и выполняем заготовки, каркасные рамки размером 835х690 мм. Для крепления метизов в раме делают отверстия. Потом на внутреннюю поверхность уголка наносим силиконовый герметик, без пропусков

Это очень важно, чтобы не оставалось мест, незаполненных герметиком. В готовую раму кладем лист прозрачного материала: оргстекла, антибликового стекла или специального поликарбоната

Стекло или другой материал тщательно прижимаем и фиксируем. Для надежного крепления стекла используем метизы по периметру каркаса. Каркас для будущей солнечной батареи почти готов.

Крупнейшие производители

Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.

Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.

Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.

Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Для европейской части стран СНГ рекомендуемый угол стационарного наклона 50 – 60 º. Если в конструкции предусмотрено устройство для изменения угла наклона, то в зимний период лучше располагать батареи под 70 º к горизонту, в летнее время под углом 30 º

Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.

Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества солнечных батарей.

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Размещая батареи на наклонной крыше дома, не забывайте об угле наклона панели, идеальный вариант, когда у батареи есть устройство для сезонного изменения угла наклона

Принцип работы

Если вы раньше особо не вникали в вопрос, как сделать солнечную батарею, то в первую очередь следует понять принцип ее работы. Если понять принцип, как она работает, то и вопрос, как ее сделать своими руками, не поставит вас в тупик. На самом деле ее конструкция вполне проста.

Как мы писали выше, солнечная батарея (СБ) — это некоторое количество фотоэлектрических преобразователей энергии, сделанных из кремния для генерации постоянного тока. Все элементы соединены и установлены в контейнере.

Преобразователи бывают трёх видов:

  • монокристаллические;
  • поликристаллические;
  • аморфные или тонкопленочные.

Фотоэлектрический эффект представляет собой следующее: свет от Солнца падает на фотоэлементы, после чего выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Свободные электроны начинают перемещаться между электродами, тем самым вырабатывая постоянный ток. Постоянный ток, в свою очередь, преобразовывается в переменный, которым и будет оснащаться здание.

схема преобразования солнечной энергии в элементах

Комплектация

Для сборки конструкции приготавливают следующий перечень материалов:

  • Фотоэлементы (пластины).
  • ДСП.
  • Углы и рейки из алюминия.
  • Поролон до 2,5 см, жесткий.
  • Прозрачное основание.
  • Крепеж (саморезы).
  • Герметик, предназначенный для внешнего применения.
  • Проводка.
  • Диоды Шоттки.
  • Клеммы.

Габариты батареи предопределяют количество всех нужных материалов. А это зависит от планируемого числа фотоэлементов.

Понадобятся следующие инструменты:

  • Шуруповерт или отвертки.
  • Ножовки для дерева и металла.
  • Паяльник.
  • Тестер для проверки параметров тока.

Фотоэлементы, не совпадающие по размеру, использовать крайне нежелательно. Ведь получаемый по максимуму ток ограничит наименьший из них. При этом мощность больших снижается.

Для сборки модулей воедино понадобятся шины. Подключение производится посредством клемм.

Каркас формируют из деревянных реек. Или же из алюминиевых уголков, отдавая им предпочтение по причинам легкости, надежности этого материала. Отсутствует коррозия, гниение, разбухание от влаги.

Потребуется также прозрачный элемент. От показателя преломления зависит КПД. Важна и способность поглощать ИК (инфракрасный) спектр.

Первый параметр наилучший у плексигласа и оргстекла. А также применяется поликарбонат, который несколько хуже.

Солнечная батарея из старых транзисторов

Те, кто занимается ремонтом радиоаппаратуры, со временем накапливают свой стратегический запас радиодеталей. Среди них могут оказаться транзисторы или диоды в металлическом корпусе. Для ремонта современных аппаратов они уже не подходят из–за больших габаритов, но собрать из старых транзисторов небольшую фотопанель — вполне реально.

Лучше всего из подручных материалов найти транзисторы типа КТ или П:

Чтобы добраться до фотоэлемента, необходимо аккуратно срезать ее верхнюю часть. Под ней и находится кремневый полупроводниковый элемент — фотоэлемент. Срезать крышечку можно, если зажать аккуратно деталь в тиски, ножовкой по металлу.

Под ней видна пластина. Именно она и будет основным элементом в будущей схеме.

Есть три выводных контакта:

  • база;
  • эмиттер;
  • коллектор.

Нам нужен коллектор. Именно он обладает хорошей разностью потенциалов.

Соберите начальную цепочку по схеме:

Собирать все элементы необходимо на ровной поверхности из диэлектрического материала. Исходя из параметров будущей фотопанели, собирается последовательная цепочка из деталей. И потом набирается параллельная группа из таких цепочек.

Если один транзистор способен выдавать 0,35 В и силу тока при КЗ в 0,25 мкА, то подобрать расчетное количество цепочек из радиодеталей можно опираясь на эти характеристики.

Не стоит забывать, что собранная батарея из светодиодов будет нуждаться в охлаждении. Поэтому не рекомендуется размещать детали плотно и близко друг от друга. Так будет лучше работать естественная вентиляция.

Опытные мастера знают, что такая конструкция неудобна из–за больших габаритов. Гораздо практичней солнечная батарея из диодов своими руками.

В любом случае попробовать спаять альтернативный источник энергии есть смысл по двум причинам:

  1. Как минимум, будут пристроены старые радиодетали.
  2. От него можно запитать электронные часы или даже небольшой радиоприемник.

Расчет и проектирование

Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.

Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей с инвертором нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.

Если мощных потребителей довольно много, но одновременно они практически не включаются, то применяемый в системе инвертор с большим выходным током получится слишком дорогим. При отсутствии значительных нагрузок рекомендуется использовать менее мощные недорогие приборы.

Солнечная батарея в домашних условиях рассчитывается по времени работы каждого электроприбора в течение суток. Вычисленное опытным путем, значение умножается на мощность, и в результате получается суточное энергопотребление, измеряемое в киловатт-часах.

Обязательно понадобятся сведения с местной метеостанции о количестве солнечной энергии, которую можно реально получить в этой местности. Расчет данного показателя выполняется на основе показаний среднегодовой солнечной радиации и ее среднемесячных значений при самой плохой погоде. Последняя цифра позволяет определить минимальное количество электроэнергии, достаточное для решения текущих задач.

Получив исходные данные можно приступать к определению мощности одного фотоэлемента. Вначале показатель солнечной радиации нужно разделить на 1000, в результате, получаются так называемые пикочасы. В это время интенсивность солнечного свечения составляет 1000 Вт/м2.

Формула для расчета

Количество энергии W, вырабатываемое одним модулем, определяется по следующей формуле: W = k*Pw*E/1000, в которой Е – величина солнечной инсоляции за определенный период времени, k – коэффициент, составляющий летом – 0,5, зимой – 0,7, Pw – мощность одного модуля. Поправочный коэффициент учитывает потери мощности фотоэлементов при нагревании солнечными лучами, а также изменение наклона лучей относительно поверхности в течение дня. Зимой элементы нагреваются меньше, поэтому и значение коэффициента будет выше.

Учитывая суммарную мощность энергопотребления и данные, полученные с помощью формулы, рассчитывается общая мощность фотоэлементов. Полученный результат делится на мощность 1 элемента и в итоге будет требуемое количество модулей.

Существуют различные модели с целым рядов мощностей элементов – от 50 до 150 Вт и выше. Выбирая компоненты с необходимыми показателями, можно собрать солнечную панель с заданной мощностью. Например, если потребность в электроэнергии составляет 90 Вт, то необходимы два модуля по 50 Вт каждый. По такой схеме можно создать любую комбинацию из имеющихся фотоэлементов. В любом случае расчеты следует производить с некоторым запасом.

Количество фотоэлементов оказывает влияние на выбор емкости аккумуляторной батареи, поскольку именно они создают зарядный ток. Если мощность панели 100 Вт, то минимальная емкость АКБ должна быть 60 А*ч. С возрастанием мощности панелей потребуются и более мощные аккумуляторы.

Коллекторы из подручных материалов

Собрать солнечный коллектор для отопления дома своими руками и дешевле и интереснее, ведь изготовить его можно из различных подручных материалов.

Из металлических труб

Этот вариант сборки походит на коллектор Станилова. При сборке солнечного коллектора из медных труб своими руками, из труб варится радиатор и помешается в деревянный короб, проложенный изнутри теплоизоляцией.

Такой самодельный коллектор не должен быть чересчур большим, чтобы его было легко собрать и монтировать. Диаметр труб на солнечные коллектора для сварки радиатора должен быть меньше, чем у труб для ввода и вывода теплоносителя.

Из пластиковых и металлопластиковых труб

Как сделать солнечный коллектор своими руками, имея в домашнем арсенале пластиковые трубы? Они менее эффективны в качестве теплонакопителя, однако в разы дешевле меди и не коррозируют как сталь.

С укладкой труб можно экспериментировать. Так как трубы плохо гнутся, их можно укладывать не только по спирали, а и зигзагом. Среди преимуществ, пластиковые трубы легко и быстро поддаются пайке.

Из шланга

Чтобы сделать солнечный коллектор для душа своими руками понадобится резиновый шланг. Вода в нем нагревается очень быстро, поэтому его тоже можно использовать в качестве теплообменника. Это самый экономичный вариант при изготовлении коллектора своими руками. Шланг или полиэтиленовая труба укладывается в короб и прикрепляется хомутами.

Так как шланг скручен по спирали, в нем не будет происходить естественная циркуляция воды. Чтобы использовать в данной системе ёмкость для накопления воды, необходимо оснастить её циркуляционным насосом. Если это дачный участок и горячей воды уходит немного, то того её количества, которое буде поступать в трубу, может оказаться достаточно.

Из банок

Теплоносителем солнечного коллектора из алюминиевых банок выступает воздух. Банки соединяются между собой, образуя трубу. Чтобы сделать солнечный коллектор из пивных банок нужно обрезать днище и верх каждой банки, состыковать их между собой и склеить герметиком. Готовые трубы помещаются в деревянный короб и накрываются стеклом.

В основном, воздушный солнечный коллектор из пивных банок используют для устранения сырости в подвале или для обогрева теплицы. В качестве теплонакопителя можно использовать не только пивные банки, а и пластиковые бутылки.

Из холодильника

Солнечные водогрейные панели своими руками можно соорудить из непригодного холодильника или радиатора старого авто. Конденсатор, извлеченный из холодильника, надо хорошо промыть. Горячую воду, полученную таким способом, лучше использовать только для технических целей.

На дно короба расстилается фольга и резиновый коврик, потом на них укладывается конденсатор и закрепляется. Для этого можно применить ремни, хомуты, либо то крепление, которым он был прикреплен в холодильнике. Для создания давления в системе не помешает установить над баком насос или аквакамеру.

Видео                                                                                         

Вы узнаете, как сделать солнечный коллектор своими руками, из следующего видео.

https://youtube.com/watch?v=n5wnaRX0bkE

Принцип работы солнечных батарей

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall – аккумулятор для солнечных панелей на 7 КВт – и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле

Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность

Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение. От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло – самый оптимальный вариант для изготовления гелиобатареи

Селективное покрытие

Селективное покрытие выполняет едва ли не самую основную функцию в работе коллектора. Пластина или радиатор с нанесённым покрытием притягивают в разы больше солнечной энергии, превращая её в тепло. Можно приобрести специальный химикат в качестве селективного покрытия, а можно просто окрасить теплонакопитель в чёрный цвет.

Чтобы сделать селективное покрытие для солнечных коллекторов своими руками, можно применить:

  • специальный готовый химикат;
  • оксиды разных металлов;
  • тонкий теплоизоляционный материал;
  • чёрный хром;
  • селективную краску для коллектора;
  • чёрную краску или пленку.