Расчет теплопотерь дома

Оглавление

Укрупненный расчет

Выше описана методика точного подсчета теплопотерь, однако далеко не все используют данную формулу, зачастую обыватели довольствуются усредненными данными, уже посчитанными для помещения высотой потолков до 3 метров. Укрупненный расчет производят исходя из значения 100 Вт/1 квадратный метр помещения. Соответственно дома площадью 100 м2 необходимо обеспечить отопительную систему мощностью примерно 10 000 Вт.

Подобные расчеты являются достаточно усредненными. Учитывая, что в нашей стране большая вариативность климатических зон, использовать такой расчет нецелесообразно. При недостаточной мощности, дом не будет достаточно хорошо прогреваться, а при избыточной — ресурсы будут расходоваться впустую.

Выявление источников теплопотерь самостоятельно и дальнейшая их ликвидация

Начать стоит с окон и дверей. Зачастую монтаж этих конструкций производится некачественно, что и становится причиной утечки тепла. Способ прост: необходимо провести рукой по контуру изделия, что позволит выявить сквозные щели. Проблемные места необходимо заделать любым теплоизолирующим материалом, сменить уплотняющие резинки. В случае если окно или дверь пропускает тепло во многих местах, разумнее будет установить новую дверь и новый стеклопакет. Следующий шаг – проверка внешних стен. Те, которые устроены некачественно и будут чрезвычайно холодными. Стена отдает много тепла на улицу по 2-м причинам: некачественная теплоизоляция или неправильная работа радиатора. С 1-м случаем разобраться сложно, а со 2-м – нет. Необходимо выпустить из радиатора лишний воздух, проверить устройство на наличие в нем мусора, так как некоторые его секции могут не нагреваться вовсе. Следующий основной этап – проверка крыши. Установив, в какой ее части имеются наибольшие сквозные щели, необходимо заполнить их утеплителем. Избежать такой проблемы можно, если изначально работы проведены качественно, тогда утечки, уходящие через крышу, будут минимальны. Вышеперечисленное – это основные и самые частые «больные» места, начать следует именно с них. Устранение этих недостатков сэкономит большое количества тепла, но проблема может быть и в другом: вентиляции, фундаменте и другом

Развернутая таблица теплопотерь

В таблице tвн — температура воздуха в помещении, Q — теплопотери помещения / ограждающей конструкции / теплопроводного включения, Qуд — удельные теплопотери помещения.

Помещение/ Наружная ограждающая конструкция/ теплопроводное включение Площадь или длина tвн, °C Q, Вт Qуд, Вт/м2
1.1 Коридор 23.1 м2 22 1745 76
Окна 0.3 м2 20
Двери 2.3 м2 191
Стены 14.6 м2 220
Пол Зона 1 10.04 м2 72
Пол Зона 2 11.21 м2 49
Пол Зона 3 4.48 м2 11
Инфильтрация 23.1 м2 935
Примыкание стен к полу на грунте 5.02 м 225
Примыкание стен к перекрытию 5.02 м 22
1.2 Кладовая 6.8 м2 19.5 866 127
Окна 1.7 м2 106
Стены 16 м2 227
Пол Зона 1 6.72 м2 43
Пол Зона 2 0.44 м2 2
Инфильтрация 6.8 м2 260
Примыкание стен к полу на грунте 5.36 м 200
Примыкание стен к перекрытию 5.36 м 19
Примыкание стен друг к другу 3.1 м 8
1.3 Санузел 7.3 м2 25 674 92
Окна 1.2 м2 85
Стены 6.91 м2 111
Пол Зона 1 4.64 м2 38
Пол Зона 2 3.36 м2 17
Инфильтрация 7.3 м2 316
Примыкание стен к полу на грунте 2.32 м 98
Примыкание стен к перекрытию 2.32 м 10
1.4 Котельная 7.7 м2 19.5 635 82
Окна 1.2 м2 75
Стены 7.81 м2 111
Пол Зона 1 5.22 м2 33
Пол Зона 2 3.78 м2 15
Инфильтрация 7.7 м2 294
Примыкание стен к полу на грунте 2.61 м 97
Примыкание стен к перекрытию 2.61 м 9
1.5+1.6 Кухня + Гостинная 39.1 м2 22 4252 109
Окна 11.94 м2 792
Стены 48.54 м2 731
Пол Зона 1 28 м2 202
Пол Зона 2 12 м2 53
Пол Зона 3 0.46 м2 1
Инфильтрация 39.1 м2 1583
Примыкание стен к полу на грунте 18 м 713
Примыкание стен к перекрытию 8.7 м 33
Примыкание стен к балконному перекрытию 9.3 м 126
Примыкание стен друг к другу 6.2 м 18
1.7 Жилая комната 18.5 м2 22 1843 100
Окна 2.72 м2 180
Стены 26.16 м2 394
Пол Зона 1 13.78 м2 99
Пол Зона 2 5.61 м2 25
Инфильтрация 18.5 м2 749
Примыкание стен к полу на грунте 8.89 м 352
Примыкание стен к перекрытию 8.89 м 34
Примыкание стен друг к другу 3.1 м 9
2.1 Коридор 19.5 м2 19.5 1102 57
Окна 1.5 м2 94
Стены 3.74 м2 53
Потолок 21.29 м2 202
Инфильтрация 19.5 м2 745
Примыкание стен к перекрытию 2.4 м 9
2.2 Жилая комната 21.2 м2 22 1612 76
Окна 2.4 м2 159
Стены 20.81 м2 314
Потолок 23.69 м2 238
Инфильтрация 21.2 м2 858
Примыкание стен к перекрытию 9.94 м 38
Примыкание стен друг к другу 1.85 м 5
2.3 Жилая комната 18.5 м2 22 1445 78
Окна 2.4 м2 159
Стены 19.08 м2 287
Потолок 20.77 м2 209
Инфильтрация 18.5 м2 749
Примыкание стен к перекрытию 9.25 м 36
Примыкание стен друг к другу 1.85 м 5
2.4 Жилая комната 18.5 м2 22 1474 80
Окна 2.08 м2 138
Стены 19.51 м2 294
Потолок 20.65 м2 207
Инфильтрация 18.5 м2 749
Примыкание стен к перекрытию 4.2 м 16
Примыкание стен к балконному перекрытию 4.74 м 64
Примыкание стен друг к другу 1.85 м 5
2.5 Жилая комната 17.2 м2 22 1461 85
Окна 3.36 м2 223
Стены 17.71 м2 267
Потолок 19.26 м2 193
Инфильтрация 17.2 м2 696
Примыкание стен к перекрытию 4.2 м 16
Примыкание стен к балконному перекрытию 4.44 м 60
Примыкание стен друг к другу 1.85 м 5
2.6 Санузел 7.7 м2 25 555 72
Окна 0.56 м2 40
Стены 4.87 м2 78
Потолок 8.71 м2 93
Инфильтрация 7.7 м2 333
Примыкание стен к перекрытию 2.61 м 11
Площадь дома 205.1 м2 17664 86
Все окна 31.36 м2 2070
Все двери 2.3 м2 191
Все стены 205.74 м2 3088
Весь пол зона 1 68.4 м2 488
Весь пол зона 2 36.4 м2 160
Весь пол зона 3 4.94 м2 12
Весь потолок 114.37 м2 1143
Вся инфильтрация 205.1 м2 8266
Все примыкания стен к полу на грунте 42.2 м 1685
Все примыкания стен к перекрытию 33.44 м 254
Все примыкания стен к балконному перекрытию 9.24 м 250
Все примыкания стен друг к другу 19.8 м 57

Расчет теплопотерь

Вот как следует производить вычисления:

Теплопотери через ограждающие конструкции

Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения — Вт/м*градус).

Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.

Для многослойных конструкций сопротивления всех слоев нужно сложить.

Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,

Где:

  • А — площадь ограждающей конструкции, кв. м;
  • dT — разность наружной и внутренней температур.
  • dT следует определять для самой холодной пятидневки.

Теплопотери через вентиляцию

Для этой части расчета необходимо знать кратность воздухообмена.

В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.

В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.

Теплопотери через вентиляцию определим по формуле:

Qв = (V*Кв / 3600) * р * с * dT,

Где

  • V — объем помещения, куб. м;
  • Кв — кратность воздухообмена;
  • Р — плотность воздуха, принимается равной 1,2047 кг/куб. м;
  • С — удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.

Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:

  • понизить требования к уровню комфорта, то есть установить желаемую температуру в наиболее холодный период на минимальной отметке, допустим, в 18 градусов;
  • на период сильных холодов понизить кратность воздухообмена: минимально допустимая производительность приточной вентиляции составляет 7 куб. м/ч на каждого обитателя дома;
  • предусмотреть организацию приточно-вытяжной вентиляции с рекуператором.

Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.

Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта. К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х. На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.

Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода — самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:

W = ((Q + Qв) * 24 * N)/1000,

Где:

  • W — количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
  • N — количество дней в отопительном сезоне.

Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.

Теплопотери через канализацию

Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.

Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный — отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.

Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:

Qк = (Vв * T * р * с * dT) / 3 600 000,

Где:

  • Vв — месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
  • Р — плотность воды, принимаем р = 1000 кг/куб. м;
  • С — теплоемкость воды, принимаем с = 4183 Дж/кг*С;
  • dT — разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
  • 3 600 000 — количество джоулей (Дж) в 1-м кВт*ч.

Ручной расчет теплопотерь

Чтобы рассчитать теплопотери дома ручным способом, понадобится найти значения утечки тепла через ограждающую конструкцию, вентиляцию и канализационную систему.

Теплопотери через ограждающую конструкцию

У любого здания окружающая конструкция состоит из разных слоев материала. Поэтому для более точного расчета, необходимо найти теплопотери для каждого слоя отдельно. Вычисляются они по следующей формуле – Q окр.к. = (A / D) *dT, где:

  • D – сопротивление теплового потока;
  • dT – разность наружной и внутренней температуры помещения;
  • А – площадь здания.

Все значения измеряются соответствующими приборами, а для нахождения сопротивления теплового потока, применяется формула — D = Z / Кф., где: Кф. – коэффициент теплопроводности материала (он производителями указан в паспорте материала), а Z – толщина его слоя.

Если здание состоит из нескольких этажей, посчитать ручным способом теплопотери через ограждающую конструкцию будет достаточно долго и неудобно. В связи с этим, можно будет воспользоваться следующей таблицей, где специалисты вывели средние

Неугловая комната. Комната, у которой угол граничит с улицей. Неугловая комната.
Кирпичная стена шириной — 67 см. и с внутренней отделкой. штукатурки. -25 -27 -29 -31 77 84 88 90 76 82 84 86 71 76 79 81 67 72 76 77
Кирпичная стена шириной — 54 см. с внутренней отделкой. -25 -27 -29 -30 92 98 103 104 91 97 101 102 83 87 92 94 80 88 90 91
Деревянная стена шириной — 25 см с внутренней обшивкой. -25 -27 -29 -30 62 66 68 70 61 64 66 67 56 59 61 62 53 57 58 60
Деревянная стена шириной — 20 см с внутренней обшивкой. -25 -27 -29 -30 77 84 88 89 77 82 85 87 70 76 79 80 67 73 76 77
Каркасная стена шириной — 20 см. с утеплителем. -25 -27 -29 -30 63 66 69 71 61 64 67 69 56 59 62 63 55 57 60 62
Пенобетонная стена шириной — 20 см с внутренней отделкой. -25 -27 -29 -30 93 98 102 105 90 95 99 102 88 89 91 94 81 85 89 91

Утечка тепла через вентиляцию

У каждого помещения через ограждающую конструкцию, циркулирует поток воздуха. Чтобы рассчитать, сколько происходит теплопотерь при вентиляции, используется формула тепловых зданий:

Qвент. = (В* Кв / 3600)* W * С *dT, где:

  • В — кубические метры длинны и ширины помещения;
  • Кв — кратность подаваемого и удаляемого воздуха помещения за 1 час;
  • W — плотность воздуха = 1,2047 кг/куб. м;
  • С — теплоемкость воздуха = 1005 Дж/кг*С.

В зданиях с паропроницаемыми ограждениями, воздухообмен происходит – 1 раз в час. У зданий, которые выполнены по «Евростандарту», кратность подаваемого и удаляемого воздуха увеличивается до – 2. Таким образом, обмен воздуха за 1 час происходит 2 раза.

Утечки тепла через канализацию

Для комфортного проживания жильцы домов нагревают воду для быта и гигиены. Также частично от окружающей среды нагревается вода в бочке и сифоне унитаза. Все полученное тепло после эксплуатации вместе с водой уходит через стоки трубопровода

Поэтому очень важно рассчитать теплопотери дома, расчет производится по следующей символической формуле:

Qкан. = (Vвод. * T * Р * С * dT) / 3 600 000, где:

  • Vвод. — общий потребляемый кубический объем воды за 30 дней;
  • Р — плотность жидкости = 1 тонна/куб. м;
  • С — теплоемкость жидкости = 4183 Дж/кг*С;
  • 3 600 000 — величина джоулей (Дж) в 1-м кВт*ч.;
  • dT — разность температуры между поступающей и нагретой водой.

Подсчет dT проводится следующим образом. Допустим, при поступлении в помещение вода имеет температуру +8 градусов, после нагрева ее температура составляет + 30 градусов. Следовательно, чтобы найти разницу, нужно из 30 вычесть 8. Получившийся итог 21 градус и следует принимать за dT.

Полученные результаты теплопотерь через вентиляцию, ограждающие конструкции и канализацию необходимо сложить вместе. Получившаяся сумма и будет примерное количество теплопотерь дома.

Методика расчета отопления дома

Чтобы самостоятельно рассчитать теплопотери дома, нужно воспользоваться одним из следующих наборов формул:

  1. Сопротивление теплопередаче ограждающих конструкций определяется по формуле R = B / K, где R — тепловое сопротивление; K – коэффициент тепловой проводимости материалов; В — толщина строительного материала. Определив сопротивление теплопередаче можно приступить к расчету непосредственно теплопотери дома Q = S × dT / R, где Q — это теплопотеря; S — площадь ограждающей конструкции; dT — разница температур внутри и снаружи помещения; R — сопротивление теплопередаче.
  2. Более точное значение теплопотерь дома можно получить по формуле Q = 0,1 × Sk × k1 × … × kn, где Q — теплопотеря дома; Sk — площадь помещения; k1 — kn — поправочные коэффициенты для корректировки результата с учетом особенностей помещения; 0,1 — базовое значение удельной тепловой мощности = 100 Вт = 0,1 кВт.

В представленном выше калькуляторе отопления дома использована вторая формула с поправочными коэффициентами. Рассмотрим подробно каждый коэффициент.

к1 коэффициент, учитывающий качество остекления:

Конструкция окна (стеклопакета) Значение k1
В помещении нет окон 0,6
Тройной стеклопакет 0,85
Двойной стеклопакет 1,0
Обычное (двойное) остекление 1,27

к2 коэффициент, учитывающий качество теплоизоляции стен:

Теплоизоляция внешних стен помещения Значение k2
Хорошая теплоизоляция 0,85
Средняя теплоизоляция (два кирпича или 200 мм дерева) 0,85
Плохая теплоизоляция 1,27

к3 коэффициент, учитывающий площадь остекления помещения:

Площадь остекления в зависимости от площади помещения Значение k3
10% 0,8
20% 0,9
30% 1,0
40% 1,1
50% 1,2

к4 коэффициент, учитывающий разность температур внутри и снаружи помещения:

Температура снаружи помещения Значение k4
-10°C 0,7
-15°C 0,7
-20°C 1,1
-25°C 1,3
-30°C 1,5
-35°C 1,7

к5 коэффициент, учитывающий число стен в помещении выходящих на улицу:

Количество стен выходящих на улицу Значение k5
Одна стена 1,0
Две стены 1,2
Три стены 1,3
Четыре стены 1,4

к6 коэффициент, учитывающий помещения над рассчитываемым:

Помещение над рассчитываемым Значение k6
Обогреваемое помещение 0,8
Теплый чердак 0,9
Холодный чердак 1,0

к7 коэффициент, учитывающий высоту помещения:

Высота помещения Значение k7
2,5 метра 1,0
3,0 метра 1,05
3,5 метра 1,1
4,0 метра 1,15
4,5 метра 1,2

Выбрав соответствующие параметры помещения можно с легкостью рассчитать теплопотери каждого помещения. Суммируя показатели каждого помещения, вы получите общие теплопотери дома. Остается только определится с мощностью (теплопроизводительностью) котла. Для этого к общим теплопотерям дома необходимо добавить 15 — 20 % резерв. Эта упрощенная методика применена в рассмотренном выше калькуляторе расчета отопления дома.

Есть и другой способ подбора мощности отопительного котла. По нормативам СНиП на каждые 10 м² используется 1 кВт мощности с учетом 10% запаса. Такой вариант расчетов возможен только для стандартных помещений с хорошей теплоизоляцией и высотой потолков не выше 3 м. Для более точных расчетов используется формула:

MK = S × YMK / 10 (кВт), где:

  • MK — мощность котла.
  • S — площадь отапливаемого помещения.
  • УМК — удельная мощность котла на 10 м² площади дома, которая рассчитывается в соответствии с климатическими условиями в конкретном регионе.
  • Деление на 10 производится, так как УМК дается на 10 м² площади.

Удельная мощность котла с учетом климатических зон:

Регионы УМК
Южные регионы 0,7 — 0,9 кВт
Регионы с умеренным климатом (средняя полоса) 1,0 — 1,2 кВт
Москва и Подмосковье 1,2 — 1,5 кВт
Северные регионы 1,5 — 2,0 кВт

Простой расчет теплопотерь зданий.

Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания. Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.

Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:

Q = S * T / R,

где

Q — теплопотери, Вт

S — площадь конструкции, м2

T — разница температур между внутренним и наружным воздухом, °C

R — значение теплового сопротивления конструкции, м2•°C/Вт

Схема расчета такая — рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции. Все.

Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.

Считаем площади ограждающих конструкций:

пол:

20 м * 40 м = 800 м2

кровля:

20,2 м * 40 м = 808 м2

окна:

1,5 м * 1,4 м * 30 шт = 63 м2

стены:

(20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2

Теперь посмотрим тепловое сопротивление используемых материалов.

Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или вычислить исходя из значения коэффициента теплопроводности по формуле:

R = d / ?

где

R – тепловое сопротивление, (м2*К)/Вт

? – коэффициент теплопроводности материала, Вт/(м2*К)

d – толщина материала, м

Значение коэффициентов теплопроводности для разных материалов можно посмотреть здесь.

пол:

бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.

R (бетон) = 0.1 / 1,75 = 0,057 (м2*К)/Вт

R (минвата) = 0.1 / 0,037 = 2,7 (м2*К)/Вт

R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт

кровля:

кровельные сэндвич панели из минеральной ваты толщиной 15 см

R (кровля) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

окна:

значение теплового сопротивления окон зависит от вида используемого стеклопакета R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4 при ?T = 40 °С

стены:

стеновые сэндвич панели из минеральной ваты толщиной 15 см R (стены) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

Посчитаем тепловые потери:

Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт

Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт

Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт

Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт

Получаем, что суммарные теплопотери через ограждающие конструкции составят:

Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч

Теперь о потерях на вентиляцию.

Для нагрева 1 м3 воздуха с температуры — 20 °С до + 20 °С потребуется 15,5 Вт.

Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт, здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.

Осталось определиться с количеством необходимого воздуха. Считается, что при нормальном дыхании человеку нужно 7 м3 воздуха в час. Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт. А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.

Итоговый результат:

Для отопления предложенного здания необходима система отопления порядка 30 кВт/ч, и система вентиляции производительностью 3000 м3 /ч с нагревателем мощность 45 кВт/ч.

Тепловые потери за счет крыши или потолка

Потери тепла для потолка и крыши рассчитываются по той же формуле, что и для стен. Теплый воздух поднимается вверх, поэтому, чтобы не отапливать улицу, следует серьезно отнестись к утеплению крыши при строительстве. Основным параметром теплопотерь здесь будет неравномерность стыков. От выбора утепляющего материала тоже будет завесить очень многое. Так, например использование эковаты предполагает отсутствие влаги. А, как известно, вместе с теплым воздухом вверх поднимается и пар, который остывая, будет конденсироваться, оседать на утеплителе, замещая воздух и снижать термическое сопротивление утеплителя.

Потери тепла через полы

Потери тепла через полы рассчитываются по той же формуле:
Qпола = kпола * Fпола (tвн — tнар),
где Qпола — теплопотери, Вт;
kпола — коэффициент теплопередачи пола, Вт/(м2*град.C);
Fпола — площадь пола;
tвн — температура воздуха внутри, град. C; можно принимать 20 град.С

tнар — температура воздуха/грунта снаружи, град. C; можно принимать 5 град.С

Пол над грунтом

Если пол находится на лагах, над неотапливаемым подвалом, kпола рассчитывается по формуле:

,

где k — коэффициент теплопередачи пола, Вт/(м2*град.C);
d1 — толщина первого слоя пола (например, бетон), м;
λ1 — коэффициент теплопроводности первого слоя пола, Вт/(м*K); дает производитель материала, или можно взять по таблице коэффициентов теплопроводности

d2 — толщина второго слоя пола (например, пенополистирол), м;
λ2 — коэффициент теплопроводности второго слоя пола, Вт/(м*K); по принципу λ1.

dn, λn — если есть еще слои — по принципу d1 и λ1;
αвн — коэффициент теплоотдачи от внутреннего воздуха к полу; принимаем равным 6.

αнар — коэффициент теплоотдачи от пола к наружному воздуху/грунту. см. ниже

Под полом α, Вт/(кв.м.*град.C)
холодный подвал, сообщающийся с наружным воздухом 17
неотапливаемые подвалы со световыми проемами в стенах 12
неотапливаемые подвалы без световых проемов в стенах выше уровня земли, технические подполья ниже уровня земли 6

Пол на грунте

Если пол расположен непосредственно на грунте, то kпола рассчитывается по формуле:

,
где d — толщина утепляющего слоя, м;
λ — коэффициент теплопроводности утепляющего слоя, Вт/(м2*град.C);
Rc по зонам шириной 2 м, параллельным наружным стенам, принимаем равным 2,1 для 1-й зоны; 4,3 для 2-й зоны; 8,6 для 3-й зоны и 14,2 для оставшейся площади.

Формулы расчета тепловых потерь

Для расчета потерь теплоты через ограждающие конструкции помещений используют законченную формулу из СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

Q = S × ((tв – tн) / R)

  • S – площадь помещения, м2;
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • R – термическое сопротивление материала, (м2 × °С)/Вт.

Для расчета общего термического сопротивления стен дополнительно применяются поправочные коэффициенты:

Rобщ = Rм + Rв + Rн

  • Rм – термическое сопротивление материала, Вт/(м2 × °С);
  • Rв – термическое сопротивление внутренней поверхности стены, Вт/(м2 × °С);
  • Rн – термическое сопротивление наружной поверхности стены, Вт/(м2 × °С).

В свою очередь, показатели термического сопротивления равны:

Rм = L / λ

Rв = 1 / αв

Rн = 1 / αн

  • L – толщина материала, м;
  • λ – теплопроводность материала, Вт/(м × °С)
  • αв – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м2 × °С);
  • αн – коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м2 × °С).

Все параметры подбираются согласно СНиП II-3-79* «Строительная теплотехника».

Теплопотери для многослойных стен рассчитываются аналогичным образом, за исключением того, что значение суммарного термического сопротивление складывается для каждого слоя:

Rобщ = Rв + R1 + R2 + .. + Rн

Иным способом производится расчет тепловых потерь на инфильтрацию, формулу можно найти в СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:

Qi = 0.28 × Gi × c × (tв – tн) × k

  • Gi – расход воздуха, м3/ч;
  • c – удельная теплоемкость воздуха, 1.006 кДж/(кг × °С)
  • tв – температура внутренняя, °С;
  • tн – температура наружная, °С;
  • k – коэффициент учета влияния встречного теплового потока в конструкциях (по умолчанию 0.8).

Расход удаляемого воздуха Gi, не компенсируемый приточным воздухом определяется следующим образом:

Gi = 3 × S

  • 3 – норма воздухообмена для жилых квартир, м3/ч (по СНиП 2.08.01-89* «Жилые здания»);
  • S – площадь помещения, м2.

Замечания и выводы.

Теплопотери здания через пол и стены в грунт, полученные по двум различным методикам существенно разнятся. По алгоритму А.Г. Сотникова значение QΣ=16,146 КВт, что почти в 5 раз больше, чем значение по общепринятому «зональному» алгоритму — QΣ=3,353 КВт!

Дело в том, что приведенное термическое сопротивление грунта между заглубленными стенами и наружным воздухом R27=0,122 м2·°С/Вт явно мало и навряд ли соответствует действительности. А это значит, что условная толщина грунта δусл определяется не совсем корректно!

К тому же «голый» железобетон стен, выбранный мной в примере — это тоже совсем нереальный для нашего времени вариант.

Внимательный читатель статьи А.Г. Сотникова найдет целый ряд ошибок, скорее не авторских, а возникших при наборе текста. То в формуле (3) появляется множитель 2 у λ, то в дальнейшем исчезает. В примере при расчете R17 нет после единицы знака деления. В том же примере при расчете потерь тепла через стены подземной части здания площадь зачем-то делится на 2 в формуле, но потом не делится при записи значений… Что это за неутепленные стены и пол в примере с Rст=Rпл=2 м2·°С/Вт? Их толщина должна быть в таком случае минимум 2,4 м! А если стены и пол утепленные, то, вроде, некорректно сравнивать эти теплопотери с вариантом расчета по зонам для неутепленного пола.

Но самый главный вопрос автору (или редакции журнала) касается формулы (3) и графика:

R27=δусл/(2*λгр)=К(cos((hH)*(π/2)))/К(sin((hH)*(π/2)))

Насчет вопроса, относительно присутствия множителя 2 у λгр было уже сказано выше.

Я поделил полные эллиптические интегралы друг на друга. В итоге получилось, что на графике в статье показана функция при λгр=1:

δусл= (½)*К(cos((hH)*(π/2)))/К(sin((hH)*(π/2)))

Но математически правильно должно быть:

δусл= 2*К(cos((hH)*(π/2)))/К(sin((hH)*(π/2)))

или, если множитель 2 у λгр не нужен:

δусл= 1*К(cos((hH)*(π/2)))/К(sin((hH)*(π/2)))

Это означает, что график для определения δусл выдает ошибочные заниженные в 2 или в 4 раза значения…

Выходит пока всем ничего другого не остается, как продолжать не то «считать», не то «определять» теплопотери через пол и стены в грунт по зонам? Другого достойного метода за 80 лет не придумали. Или придумали, но не доработали?!

Прошу уважающихтруд автора скачивать файл с программами расчетовпосле подписки на анонсы статей!

Ссылка на скачивание файла:

teplopoteri-cherez-pol-i-steny-v-grunt (xls 80,5KB)