Внешний осмотр
Внешний осмотр часто дает положительные результаты, так как позволяет без проверки мультиметром установить неисправность резистора. Если деталь перегорела, не имеет смысла ее ремонтировать: обычно резистор меняют на новый. Случаи, когда требуется замена, бывают следующие.
Одна из ножек резистора была оторвана. Чаще всего обрыв ножки происходит при постоянном перегреве элемента. Это случается, если в схему не включена защита, или по каким-то причинам она не срабатывает.
Читать также: Шаблоны для работы с фрезером ручным
Мультиметр может показать, что резистор способен оказывать сопротивление, но при этом визуально заметно, что он обуглен. Такой элемент не стоит оставлять в схеме и рекомендуется заменить, так как он все равно не прослужит долго. То же самое касается других деталей, покрытие которых потемнело.
Если корпус не цельный, имеет трещины, при прикосновении разламывается на части, то резистор, скорее всего, не будет работать.
Для того чтобы можно было точно проверить исправность элемента, необходимо знать его номинальное сопротивление. В противном случае проверить можно будет лишь целостность детали и ее способность проводить ток.
Типы мультиметров
Для уточнения величины электрического сопротивления замеряют ток в цепи при одновременном поддержании калиброванного напряжения. Изменение фиксируется индуктивным либо другим датчиком. Данные отображаются на стрелочном индикаторе или дисплее с применением аналогового или цифрового способа передачи информации.
Второй метод – сравнение двух токов (измеряемого и контрольного). Как и в первом примере, применяют аналоговые и цифровые технологии обработки (передачи, отображения) данных. В зависимости от модификации, для настройки режимов используют:
- кнопки;
- поворотный переключатель;
- гнезда.
В современных приборах предлагается автоматическая настройка диапазона
Типовая проверка резистора мультиметром выполняется по следующему алгоритму:
- отсоединяют источник питания электрической схемы;
- визуальным способом определяют неисправный элемент;
- с применением выпаивания извлекают резистор;
- подключают щупы по схеме, установленной производителем измерительного устройства;
- устанавливают регулятор в диапазон с максимальным (предполагаемым) сопротивлением (Ом);
- выполняют измерение, проверяют работоспособность детали.
Ниже рассмотрены важные нюансы, которые учитывают при воспроизведении отдельных технологий проверки.
Принцип работы
Работа любого омметра (включая и современные цифровые измерители) базируется на основном постулате электротехники – законе Ома. Согласно его условиям, чем больше сопротивление, тем меньше проходящий через него ток – при неизменном напряжении питания.
Омметру для работы необходим источник питания. Образуется запитанная электрическая цепь, в которой прибор, учитывая напряжение питания и ток, протекающий через замеряемый элемент, определяет сопротивление.
В Китае можно заказать никель-кадмиевую аккумуляторную батарейку на 8,4 В – 7 перезаряжаемых элементов по 1,2 В, упакованных в корпус такого же размера, ёмкостью до 200 миллиампер-часов – она даст близкое к 9 В питание, отчего прибор не выдаст существенную погрешность.
Такой способ – выход для тех, кто часто по работе замеряет сопротивление резисторов, спиралей и обмоток, «прозванивает» кабельные линии и т. д.: после примерно 1000 замеров обычная батарейка «села» бы.
Цифровой мультиметр
Главной особенностью цифрового мультиметра является наличие экрана, на нём наглядно отображается измеряемая величина. В основе принципа действия устройства лежит сравнение измеряемого сигнала с опорным, для этого используется аналого-цифровой преобразователь.
Для проведения измерения тестер подключается набором проводов к измеряемому элементу. На одном конце каждого из проводов находится штекер, предназначенный для установки в гнездо измерителя, а на другом контактный щуп. Порядок измерения сопротивления резистора электронным мультиметром можно представить в виде следующих действий:
- Нажтием на кнопку ON/OFF включается устройство.
- Подключаются щупы к двум концам резистора, обратные концы проводов к разъёмам Ω и СОМ.
- Переключателем устанавливается примерное сопротивление.
- В случае когда на индикаторе высвечивается единица, переключатель следует переставить на одну позицию вверх, т. е. увеличить предел измерения.
- Если при снятии показаний на экране отображаются цифры, отличные от единицы, это и будет значение сопротивления.
Стрелочный прибор
Самые первые измерительные приборы снабжались стрелочным устройством. Это устройство представляло собой электромеханическую головку. Конструктивно она выполнена в виде рамки, находящейся в магнитном поле. На эту головку через различные сопротивления подаётся электрический сигнал. В зависимости от силы тока стрелка в рамке отклоняется, устанавливаясь в определённое положение. Диапазон отклонения стрелки проградуирован, согласно этим значениям и вычисляется требуемая величина. Технические возможности аналогового тестера во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Главным его достоинством является инерционность и невосприимчивость к помехам во время измерения постоянного напряжения и величины сопротивления.
Стрелочные приборы идеально подходят для отображения динамики сигнала. Тестер мгновенно показывает его изменение. Вместе с тем такой прибор обладает большой погрешностью при измерениях в высокоомных цепях, и имеется некоторая сложность в интерпретации результатов измерения.
Перед измерением величины сопротивления тестер настраивается путём вращения ручки нуля до тех пор, пока стрелка не установится на значение «∞». При выборе диапазона измерения «Ω» значения сопротивления маркируются не максимальными числами в этом диапазоне, а имеют такой вид: х1, х10, х100. Это означает, что полученное значение будет измеряться в Ом, кОм, и МОм. Измерение активного сопротивления производится от установленного в устройстве источника постоянного тока (батарейки).
Что такое проверка радиоэлементов?
Проверка радиоэлементов — не что иное, как измерение их фактических показателей и сравнивание с технически заложенными параметрами при изготовлении. Если данные совпадают или близки по значению (в допустимых пределах), это говорит об исправности радиодеталей. В случае значительного расхождения, элементы явно неисправны и требуют замены.
Каких результатов можно добиться, измеряя детали радиосхемы:
- Определить неисправность. Это позволит восстановить схему после замены сгоревшего элемента на новый.
- Обнаружить частичный износ радиодетали. Это в дальнейшем поможет предотвратить отказ устройства в работе.
- Выявить скрытый дефект. Например, плохо пропаянный вывод, который со временем оторвется, особенно если схема подвергается воздействию вибрации.
- Установить цепочку нарушений по одной вышедшей из строя радиодетали. Во многих схемах сгорание одного определенного элемента автоматически приводит к сгоранию других, от него зависимых.
Измерение сопротивления мультиметром
Для замера к контактам проверяемого устройства присоединяются зажимы-«крокодилы» или щупы (в этом случае достаточно простого касания). Дисплей показывает реальное сопротивление на мультиметре. При этом в случае незамкнутой цепи возможно появление 1 в крайнем левом положении (базовый разряд устройства) вместо трех-четырехразрядного числа. Если щупы разомкнуты, показания прибора будут такими же.
Проверку сопротивления мультиметром начинают с максимального, превышающего предполагаемое значение, положения регулятора. Постепенно переключаясь на меньшие значения, уточняют действительную величину показателя. Изменение диапазона ведется по следующему принципу:
- на экране нули – реальное значение намного меньше используемого;
- появились значащие цифры, но первый разряд ноль – снижается показатель на одно деление;
- необходимая точность замера сопротивления мультиметром считается достигнутой, если на экране отображается число больше единицы.
Измерение собственных индуктивности, емкости резистора
Будем предполагать вначале, имеем необходимые средства измерения. Тогда порядок действий установлен:
- Берем генератор первой частоты. Например, 15 МГц. Параллельно сопротивлению включается переменная емкость (целая батарея). Номиналы конденсаторов (паразитной резистора, подобранной пользователем) складываются. Суммарная емкость образована переменной, собственной (резистора). Сформирован параллельный колебательный контур.
- Последовательно включаем чисто активную нагрузку. Другой резистор схожего номинала. Выполненная мера формирует делитель напряжения. Дальнейшей регуляцией будем пытаться получить резонанс. Чтобы зарегистрировать факт достижения схемой заданного состояния, нужно обязательно собрать делитель.
- Путем подбора номинала переменной емкости добиваемся резонанса системы. Крутим туда-сюда, тестером измеряем напряжение колебательного контура, вставив описанную выше приставку. Минимальная разница потенциалов указывает точку резонанса.
- Запомним номинал переменной емкости. Традиционно присутствует ручка регулятора, шкала отсутствует. Посмотреть показания невозможно. Схему разберите, сохраняя настройки, измерьте номинал. Проще всего использовать мультиметр, снабженный соответствующей шкалой (F). В противном случае потребуется ряд косвенных замеров. Отдельная тема.
- Повторяем опыт, беря другую частоту. Получая заметную разницу регистрируемых показаний. Величина расхождения характеризует полученный номинал переменной емкости. Цифры должны отличаться (обеспечение минимальной погрешности). Попытались, потерпели неудачу? Напрашивается вывод: собственной емкостью резистора пренебрежем в указанных условиях (очень мала). Индуктивность находим, пользуясь типичной формулой резонанса цепи: ω2 = 1 / LC.
- Начинаем расчет, руководствуясь следующими соображениями: квадрат круговой частоты генератора (радиочастота, помноженная на два числа Пи) обратно пропорционален произведению собственной индуктивности конденсатора и сумме паразитной, переменной емкостей. Проведя измерение двух разных частот (допустим, 15, 7 МГц), можно получить два результата. Важны номиналы переменных емкостей. Если по формуле поделить квадраты круговых частот, получим: квадрат отношения обычных частот соотносится только с частным от емкостей, индуктивности сократятся.
Вот как это выглядит:
(f1/f2)2 = (C + C2) / (C + C1); f1, f2 — частоты проведения опытов (Гц), С – собственная емкость резистора; С1, С2 – переменные емкости, соответственно, первой и второй частот опыта. Пользуясь формулой, потрудитесь найти собственную емкость, идя проторенным путем, вычислите индуктивность резистора
Обратите внимание: важно найти непременно минимум напряжения. Способ сделать задуманное – отдельная тема разговора
Прозвонка цепей
Для тестирования работоспособности электроприбора необходимо испытать все его соединения методом проверки сопротивления. Кабельные линии на целостность также контролируются этим способом. Например, прямые соединения между разъемами или длинные линии интерфейсов. Эти соединения тоже можно проверить мультиметром в режиме омметра. Для этого нужно:
- Установить ручкой на передней панели измерителя режим проверки сопротивления и минимальный предел измерений (2—20 Ом);
- Определить контакты цепи или кабеля, между которыми существует прямое соединение. Это можно увидеть на принципиальной схеме;
- Приложить щупы измерительного прибора к выбранным контактам. Если на экране отображается показание порядка единиц Ом (до сотен Ом для кабеля), то цепь работоспособна.
Как проверить резистор мультиметром, не выпаивая на плате
Без демонтажа эти детали можно проверять при сравнительно небольших номинальных значениях электрического сопротивления (80-120 Ом). Предполагается, что в этом диапазоне влиянием других элементов схемы можно пренебречь. В действительности, следует уточнять возможность измерений без существенных искажений.
Если шунтирующие цепи не позволяют обеспечить необходимую точность, придется выпаять хотя бы одну ножку. Альтернативное решение – разрезают дорожку печатной платы. Впоследствии устраняют соответствующие повреждения.
В публикации показано, как прозвонить резистор с применением разных методик. Оптимальный вариант выбирают с учетом:
- уровня повреждений;
- особенностей мультиметров;
- условий работы.
В любом случае следует применить меры, предотвращающие искажение измеряемых параметров. Аккуратное обращение с паяльником и вспомогательными инструментами поможет сохранить в целостности исправные детали.
Виды резисторов по характеру сопротивления
Основная характеристика резисторов — собственно сопротивление, которое измеряется в «омах». Обозначается единица измерения как «Ом» — по фамилии немецкого физика Георга Ома. Вторая характеристика — рассеиваемая мощность, измеряется в Ваттах (Вт). Это та мощность, которую элемент может преобразовать в тепло без повреждения работоспособности. Рассеиваемая мощность иногда отражается на схеме в виде черточек на «теле» элемента (см. на рисунке ниже справа), но точно указывается в спецификации. В принципе, рассеиваемую мощность можно примерно определить по размерам элемента. Чем больше корпус, тем больше рассеиваемая мощность.
Обозначение рассеиваемой мощности постоянных резисторов на схеме
Существуют два типа резисторов по характеру сопротивления: постоянные и переменные. Постоянные не меняют свое сопротивление никогда (в идеале). Переменные изменяют, но принудительно. Для этого надо передвинуть бегунок, покрутить ручку или специальный регулятор. Переменные резисторы могут быть регулируемые и подстроечные. У обоих видов можно изменять сопротивление в некотором диапазоне. Только у регулируемых диапазон обычно шире. Именно они стоят на регуляторах громкости, частоты и т.д.
Переменный резистор часто можно увидеть в радиоприемниках
Есть также подстроечные резисторы, предназначенные для точной настройки заданных параметров радио- и электронных устройств в процессе их выпуска из производства при настройке после монтажа или в процессе ремонта. Как правило, они имеют не слишком широкий диапазон. На подстроечных моделях есть небольшой регулятор под отвертку (как правило).
Проверка электронным мультиметром
Следует отметить, что резисторы довольно надёжны, поэтому их проверку следует проводить после того, как вы убедились в исправности остальных элементов
В первую очередь обратите внимание на сопротивления в цепях, где ранее были обнаружены неисправные элементы
Сама по себе процедура проверки довольно проста, но требует выполнения определённых действий.
Для проверки будем использовать электронный мультиметр. Щупы прибора должны быть подключены к разъёмам COM и VΩmA. Полярность подключения щупов к выводам проверяемого элемента не имеет значения. Переключатель тестера необходимо установить в положение омметра (сектор помечен знаком Ω). Цифры обозначают максимальный предел измеряемой величины.
Перед началом проверки соедините щупы вместе, при этом показания прибора должны быть равны нулю, что говорит об исправности прибора и проводов щупов. Если переключатель установлен на самом малом пределе измерения, то прибор может показывать величину равную единицам ома. Эту неточность нужно будет учесть при измерении малых величин. Кроме того, у резисторов есть допустимое отклонение от номинала, если точных данных найти не удалось, то погрешность в 10 процентов можно считать нормальной.
Для начала необходимо определить номинальное сопротивление у элемента, который вы собираетесь проверять. Сделать это можно несколькими способами:
- На элементах старого образца величина номинального сопротивления указана на корпусе резистора.
- На современных элементах применяется цветовая маркировка. Это набор цветных колец, нанесённых на корпус. С их помощью зашифровано сопротивление. Нужно взять таблицу цветовой маркировки и определить искомую величину.
- Если вы проверяете элемент с электронной платы, то возле элемента стоит его обозначение в виде буквы R и порядкового номера. Можно взять схему электронного устройства и по обозначению определить номинал. Иногда эта величина указана прямо на печатной плате.
https://youtube.com/watch?v=SxgV8yC9eKA
Постоянный резистор
Проверку выполняем в такой последовательности:
- зачищаем выводы резистора от окислов и загрязнений;
- выставляем на мультиметре предел измерения, который несколько больше номинальной величины;
- кладём элемент на диэлектрическую поверхность;
- прижимаем щупы прибора к выводам резистора, при этом нельзя прикасаться к щупам пальцами.
На экране мы можем увидеть три варианта показаний:
- Единица на экране прибора говорит о том, что сопротивление резистора больше установленного предела измерения. Проверьте правильно ли выбран предел измерения, если ошибки нет, то присутствует обрыв между выводами элемента. Такой элемент неисправен и подлежит замене.
- Ноль обозначает, что выводы соединены накоротко. Элемент неисправен.
- Если на экране другое число, сравните его с величиной номинального сопротивления резистора. Измеренная величина не должна отличаться от номинальной больше чем на 10%. Чтобы было понятно, при проверке резистора в 1 тыс. Ом прибор может показать величину от 900 Ом до 1100 Ом, в обоих случаях элемент можно считать исправным. Когда вы измеряете величины менее ста Ом, не забудьте от полученного значения отнять сопротивление щупов.
Тестирование подстроечного резистора
У переменного резистора на корпусе три вывода. Для проверки необходимо определить, к какому выводу подключён подвижный (средний) контакт. Для этих целей можно воспользоваться справочными данными, если это невозможно, то определим его в процессе измерений:
- Перемещаем ручку резистора в среднее положение.
- Выполняем все действия, указанные для постоянных резисторов, но измерения проводим попарно между первым и вторым, вторым и третьим, третьим и первым выводами. Пара между которыми сопротивление будет максимальным — это крайние выводы. Сравниваем это значение с номинальной величиной по аналогии с постоянными резисторами. Если всё в норме, продолжаем проверку.
- Перемещаем ползунок в одно из крайних положений. Производим измерение между центральным и крайними выводами, должны получить ноль и номинальное значение. Если данные другие (допускается небольшая погрешность), то элемент неисправен.
- Повторяем измерение во втором крайнем положении ползунка, теперь показания должны поменяться местами (там, где был ноль, будет номинальное значение, и наоборот).
- Подключаем щупы к центральному выводу и к любому крайнему. Плавно перемещаем ручку и следим за показаниями прибора. Сопротивление должно изменяться без скачков, если прибор показывает единицу, это говорит о том, что в этом положении ползунка контакт плохой или пропадает вовсе, а следовательно, нормально работать такой резистор не будет, и его нужно менять.
Как определить исправность СМД-резисторов
SMD-резисторы являются компонентами поверхностного монтажа, основным отличием которых, является отсутствие отверстий в плате. Компоненты устанавливаются на токоведущие контакты печатной платы. Преимуществом СМД-компонентов являются их малые габариты, что даёт возможность уменьшить вес и размеры печатных плат.
Проверка SMD-резисторов мультиметром усложняется из-за мелкого размера компонентов и их надписей. Величина сопротивления на СМД-компонентах указывается в виде кода в специальных таблицах, например обозначение 100 или 10R0 соответствует 10 Ом, 102 указывает 1 кОм. Могут встречаться четырёхзначные обозначения, например 7920, где 792 является значением, а 0 — это множитель, что соответствует 792 Ом.
Внешний осмотр
Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.
Какие установить настройки
Прежде чем снимать показания мультиметромом, необходимо убедиться в том, что его аккумуляторы заряжены. Режим нужно выбрать соответствующий «прозвону» электропроводки, концы щупов мыкают (соприкасают) друг с другом. Прибор будет издавать звуки, по громкости которых можно определить, насколько пригодна его батарейка.
В зависимости от модификации прибора режим прозвона может обозначаться разными символами – встречается колокольчик, точка со скобками (радиоволны). При проверке электрических цепей или радиодеталей мультиметр издает определенные звуки, «звонит», отсюда и сленговое название данной операции.
Для того чтобы проверить резистор с помощью мультиметра, нужно поставить переключатель прибора в положение, соответствующее номинальному сопротивлению элемента, который вы собираетесь проверять. Значения нанесены на переднюю панель устройства, можно различить их градацию по диапазонам. Нужно правильно выбрать диапазон, иначе величина сопротивления не совпадет, и результат проверки не будет достоверным. Например, при сопротивлении 1 кОм прибор нужно ставить в режим Ω – 20 кОм.
Резисторы постоянного сопротивления (постоянные резисторы).
Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.
Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные.
2.1. Непроволочные резисторы.
Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки, нанесенной на керамическое основание.
Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.
В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).
Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.
2.2. Проволочные резисторы.
Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.
Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.
Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.
По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.
Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.
С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.
Настройка мультиметра
Для того чтобы измеритель показал правильные значения, нужно его подготовить к работе. Мультиметр может измерять большое количество электротехнических величин:
- Напряжение постоянное и переменное;
- Силу тока;
- Сопротивление;
- Частоту.
А также им можно проверять диоды, транзисторы и конденсаторы. Мультиметр можно настроить на проверку различных уровней значений, от миллиом до гигаом, необходимо только выбрать правильный предел измерения.
https://youtube.com/watch?v=c3wlKyhgU4w
https://youtube.com/watch?v=mL7XNOpDoRI
Цифровой прибор
Настройка измерительного прибора, имеющего цифровую шкалу, отличается от настройки стрелочного аналогового прибора. Цифровые мультиметры могут настраиваться ручкой, переключающей режимы, а могут кнопками выбора режима. Иногда измеритель сам определяет уровень сигнала и этот параметр не нуждается в настройке. Но в большинстве случаев необходимо выполнить такой порядок действий для подготовки к измерениям:
Правильно установить щупы в гнезда: красный — в отверстие, маркированное U, Ω, Hz, а черный — в гнездо с надписью COM;
Выбрать режим измерения. Выбирается ручкой на панели мультиметра или нажатием соответствующей кнопки. Обозначение должно быть Ом или Ω;
Выбрать уровень проверяемого сигнала. Производится это также ручкой либо несколькими нажатиями кнопки;
Правильно присоединить сопротивление к щупам измерителя
Важно, чтобы ничто не вносило погрешностей в проверку. Металлических концов щупов и выводов резистора касаться пальцами категорически запрещено, так как это изменит показания.
Аналоговый измеритель
Такой прибор обычно имеет сразу несколько шкал, показания на которых отображаются стрелкой. Для того чтобы определить, по какой из шкал снимать показания, нужно установить определяемую величину измерения ручкой на передней панели и выбрать её характер: постоянный, переменный ток или напряжение, или же сопротивление (в омах или килоомах) переключающимися кнопками. Каждая из шкал подписана, так что нужно просто найти соответствующую выбранному измерению надпись и по ней вести отсчет показаний.
Для измерений также нужно верно подключить щупы в правильные гнезда с надписью Ω и COM. При необходимости произвести подстройку нуля специальной ручкой. Для этого при замкнутых контактах щупов посмотреть, находится ли стрелка прибора на нуле. Если есть отклонение, то отрегулировать его вращением ручки с надписью «Подстр. нуля».
https://youtube.com/watch?v=3qPMqKeH80c
Проверка переменного резистора
Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.
Переменный резистор
Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.
Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:
- Мультиметр включают в режим измерения.
- Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
- Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.
Основные этапы тестирования
Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:
- внешний осмотр;
- радиодеталь тестируется на обрыв;
- осуществляется проверка соответствия номиналу.
Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.
Инструкция
Итак, как измерить сопротивление мультиметром? Для этого требуется всего три шага, однако вначале следует в обязательном порядке убедиться, что проверяемая сеть полностью обесточена.
Измерительный провод черного цвета вставляется в гнездо COM, после чего шнур красного цвета вставляется в VΩmA. Затем требуется включить прибор. Чаще всего это делается поворотом переключателя измерений. Для работы с самыми малыми сопротивлениями потребуется поставить переключатель на букву «омега» и установить диапазон на 200, то есть в пределах 0,1-200 Ом (измерение малых сопротивлений). Далее производится проверка на замыкание измерительной цепи, для чего щупы замыкаются между собой. Если мультиметр исправен, на экране появится показатель порядка 0,3-0,7 и, как уже говорилось, он должен быть постоянным. Данный показатель отображает сопротивление самих измерительных проводов. Если этот показатель выше или часто меняется, следует обновить провода. Если провода разомкнуты, на экране должна быть единица, что показывает очень высокое (бесконечное) сопротивление.
Для того чтобы произвести измерение, требуется одновременно прикоснуться к контактам цепи. Если система работает исправно, мультиметр измерит показания. Если производится проверка на обрыв питания, тестер отобразит новые показания. Сопротивление в таком случае должно быть достаточно низким, вплоть до 1,5 Ома. Если же требуется померить сопротивление потребителя тока, например, лампочки или обмотки трансформатора, показатель может подскочить до 150-200 Ом. Имеется достаточно характерная особенность: с ростом мощности потребителя тока проверка сопротивления прибора мультиметром показывает более низкий результат.
Если мультиметр отображает все те же значения – переходим к новому диапазону и продолжаем попытки. Имеется здесь важный момент. Если поставить переключатель на 2000к и взяться за контакты щупов голыми руками, то получится, что мы меряем сопротивление тела, что, разумеется, скажется на результатах.
Внешние признаки неисправности резистора
Перед тем, как проверить подозрительный резистор, нужно осмотреть его. На самом деле внешних признаков неисправности может и не быть. Деталь выглядит, как новая, но контакт внутри оборван. Поиск такого дефекта очень затруднен и связан с умением понять принцип работы устройства. Для этого необходима его принципиальная схема, по которой нужно разобраться, в каких ее точках должно быть напряжение и какой величины. На схемах бытовой техники, предназначенных для сервисного обслуживания, такие точки обычно обозначены и в них указано контрольная величина напряжения.
Резисторы проверяют на работоспособность в последнюю очередь, когда не остается сомнений в исправности всех полупроводниковых приборов (диодов, транзисторов, микросхем) и конденсаторов. Также необходимо удостоверится в непрерывности печатных проводников и отсутствии обрывов соединительных проводов, правильности и надежности соединения разъемов. Вероятность выхода из строя резистора по сравнению с вышеперечисленными дефектами очень мала.
https://youtube.com/watch?v=F9fU6_SB6Xk
Иногда поверхность детали темнеет или краска на ней обгорает. Это хоть и является поводом проверить исправность резистора, не является однозначной причиной для замены. Означает это всего лишь то, что мощность, выделяемая на резисторе, была в какой-то момент времени выше допустимой. А это происходит при превышении параметров, на которые он рассчитан на данном участке цепи. Нужно проанализировать по схеме, куда шел ток через деталь: на какой транзистор, конденсатор, диод или вывод микросхемы. И сначала проверить их исправность.
Даже если окажется, что деталь, в цепи питания которой обнаружен обугленный элемент, неисправна, необходимо все равно проверить исправность самого резистора. Не факт, что он выдержал перегрузку по току без вреда для себя.